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ABSTRACT

The fundamental concept of orthogonality of mathematical objects occurs in a wide
variety of physical and engineering disciplines. The theory of orthogonal functions, for
example, is central to the development of Fourier series and wavelets, essential for signal
processing. In particular, various families of classical orthogonal polynomials have tra-
ditionally been applied to fields such as electrostatics, numerical analysis, and many
others.

This thesis develops the main ideas necessary for understanding the classical theory
of orthogonal polynomials. Special emphasis is given to the Jacobi polynomials and to
certain important subclasses and generalizations, some recently discovered. Using the
theory of hypergeometric power series and their q -extensions, various structural prop-
erties and relations between these classes are systematically investigated. Recently, these
classes have found significant applications in coding theory and the study of angular
momentum, and hold much promise for future applications.
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I. INTRODUCTION

The abstract concept of orthogonality of functions (or other mathematical objects)
is a generalization of the notion of having two or more vectors perpendicular to one
another. This concept arises naturally in a wide variety of physical and engineering
disciplines. For example, the theory of orthogonal functions is central to the develop-
ment of Fourier series and wavelets which are essential to signal processing.

Classical Fourier series (real form) depend on the property that the trigonometric
functions sine and cosine are orthogonal (on an appropriate real interval) in a formal
sense that will be made precise later. As a consequence, a bounded periodic flunction
f(x) of period 2x which satisfies the Dirichlet conditionsi may be expressed in the form

f(-V) - IoZa cos nx+ b. sin nx)
RMI

where

apt Jf(x) cosnxdxn- O, 1, 2,...
it

b.. -LfW f(x) sinnxdx, n-1,2,3,...
X-W

are the classical Fourier coe.Ticients. These formulas can be modified via a change of
variable to accomodate any such function of period 2L. [Ref. 1: p. 5291

This property can be used to generate other classes of orthogonal functions -
polynomials, for example - that behave in very structured and useful ways such as in
generalized Fourier series. In particular, specific families of these "classical orthogonal
polynomiais" have traditionally been used for solving problems arising in various areas
of applied mathematics, physics, and engineering, among others.

This thesis develops the main ideas necessary for understanding the classical theory
of orthogonal polynomials. Special emphasis is given to the Jacobi polynomials and to
certain important subclasses and generalizations. Much of the investigation will be

I Dirchlet conditions: (i) In any periodf(x) is continuous, except possibly for a finite number
of jump discontinuities, (il) In any periodf(x) has only a finite number of maxima and minima.
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made using the theory of hypergeometric power series and their q -extensions. The

classes discussed in this thesis are but a small traction of those identified and studied in

the literature.

A. CHEBYSHEV POLYNOMIALS

The Chebyshev ponomials of the first kiW, T.(x), arise from an elementary trigono-

metric consideration. As such, they satisfy various properties and identities which are

easily derived directly from their definition, many of which are observable from their

graphs (see below). This class of polynomials will serve as the model for some of the

basic stnicture of more general classes.
For m - O, 1,2, ... , define

T.(.Y) - cos(n arccos x), - 1 $ x < I

i.e., letting x - coa 0, 0 8 it,

(1) T7,( cos 9) m cos n8.

Some immediate consequences of (I) are IT.(x)l 1 1 for Ix. 1, with

T.( cos. 1)u l)", 05 k n ; in particular T.(I) - I and Tj l)-(- I for all n

which can be seen graphically in Figure 1.

1. Three-term Recurrence Relation/Differentlal Equation

From (1), we have

(2) To(x)-I and T,(x)-x,

and by considering the identity

(3) cos(a + b) + cos(a - b)- 2 cos a cos b

with a " nO, b - 0, we obtain

(4) Tj÷,(x)- 2xl•T(x) -T,(x).

Equation (4) is known as the three-term recurrence relation for T.(x) which to-

gether with initial conditions (2) imply that T.(x) is a polynomial of dcgrce exactly n,

called the nal Chcbyshcv polynomial of the first kind. Note that the lcadiig cocllicicnt

of T.(x) is 2-' for n ; 2. An inductive argument applied to this recursion shows ti.at

2
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Differentiating (1) twice with respect to 9 yields the second order differential

equation for T.(x):

,(5) (1 - ,2)T.*(x) - xT.'(x) + n2 T r) --.
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.



2. OrlhOJonatity of Ciwbyhlay Polyomias
Let

M0W f-, cos mO cos x .

If m 0 n, then using (3) with a - mO, b - M0 yields

'rsin(m + m)8 sin(m - n)O, 1 ."2 m+n + ,si ) -

0

S n o0, then by using the identity cosla - (- I + cos 2a),

• o 22

[8+-Lsin 2n8]..

Im' m 0 0, then

1- foe - -.

Hence,

(6) fo* cos mO cos nO dO - h,-' 6m,

where

" x)n/2, m - no 0

and

0, m -n

is the Kronecker deltafunction. Changing variables via x - cos 0, we have

4



(7) T )Tn(x) -dX = h;' 6mln-

This important property is formally known as the orthogonality relation for the

Chebyshev polynomials. The reason for this terminology will become clear in the next

chapter.

3. Zeros of Chebyshev Polynomials

Setting T.( cos 0) = cos nO = 0, we obtain 0 0,. 2k-- i
2n

x - Xk.,, = cos 0 k,,, 1:< k 5 n.

Thus all the zeros of T,(x) are real, distinct, and may be regarded as the

projections onto the interval (-1,1) of the equally distributed points 0 k., on, the unit

circle, as seen in Figure 2. Moreover, for 1 < k < n, an easy algebraic check verifies that

0k. <i0k, < Ok+l,,+I and therefore x4. ,,+ < xkn < Xk ,,. 1lHence, the zeros of T,,+(x)

interlace with those of T,(x). This interlacing of zeros is a striking feature of the plots

in Figure 1.

The zeros of Chebyshev polynomials, and of other orthogonal polynomials in

general, are extremely important for applications to numerical analysis, electrostatio,

and many other fields.

4. Looking Ahead

Many of the properties derived for the Chebyshev polynomials T,(x) from their

trigonometric definition (1), extend to more general classes of orthogonal polynomials
via a general theory, elements of which will be devekoped in this thesis. Some of the

many properties satisfied by these classes that we will derive include:

1. Orthogonality with respect to a weight function

2. Three-term recurrence relation

3. Second order differential or difference equation

4. Hypergeometric series expression

5. Rodrigues' formula

6. Generating function.

The general approach we will take is to define these "classical orthogonal polynomials"

via terminating hypergeometric power series, and from this prove (most of) the other

properties. However, because of this equivalence, many authors choose to define a given

class using one of these other characterizing properties.

5
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Figure 2. Zeros of Chebyshev Polynomials

In order to understand the general theory, it is first necessary to define the ab-
stract concept of orthogonality in an appropriately defined "space' of functions. We

turn our attention to these fundamental ideas in the next chapter.



IH. BACKGROUND

A. ELEMENTARY LINEAR ALGEBRA
1. Vector Spaces

Let R" denote the collection of all vectors (n-tuples), u = (a,, a2, ... , a.), where
each a, e R, i - 1, 2, ... , n. The standard Euclidean inner product (also referred to as the

dot product ) of two such vectors u - (a,, a2, ... , a,) and v = (bl, b2, ... , b,) is given by

< U, v > =Zaibi.
1-1

The length, or norm, of a vector u e R" is given by

Hll- =fi UU> ( iai,2),

Two vectors u, v e R" are perpendicular, or orthogonal, if and only if < u, v > = 0.

The objective of this chapter is to extend these familiar notions to objects other
than classical Euclidean vectors, in particular, the "vector space" of polynomials defined
on a real interval [a, b].

A vector space V over a scalar field F (usually R or C ) is a nonempty set of
objects called vectors, for which the operations of addition and scalar multiplication are
defined. Addition is a rule for associating with each pair of vectors u and v in V an
element u + v, called the sum of u and v. Scalar multiplication "s a rule for associating
with each scalar c in F and each vector u in V an element cu, called the scalar multiple
of u by c. [Ref. 2: p. 1501

For all u, v, w e V and c, d e F, a vector space V must satisfy:

I. Additive closure. u, v e V t u + v e V

2. Commutativity. u + v = v + u

3. Associativity. u + (v + w) = (u + v) + w

4. Additive identity. There exists a zero vector, 0 e V, such that 0 + u = u + 0 = u.

5. Additive inverse. For each u e 1', there exists a vector - u e V, such that
u + (- u) = (- u) + u - 0.

6. Multiplicative closure. u e V and c e F = cu e V

7



7. Distributivity. c(u + v) - cu + cv

8. Distributivity. (c + au - cu + du

9. Multiplicative associativity. c(du) - (cd)u

10. Multiplicative identity. There exists a scalar I e F such that Iu = u.

Example 1: R" (the model)

Example 2: PN~a,b] - (polynomials of degree < N on the interval [a,b)}

Example 3: P[a,b] - {polynomials on the interval Ca,b])

Example 4: C[a,b] - (continuous functions on the interval [a,b])

Note that P,[a,b] c P[a,b] c C[a,b]. These vector spaces are sometimes re-

ferred to as function spaces. The interval Ca,b] may be finite or infinite (i. e.,

[a, oo), (-oo, b], or (-oo, oo) ) for our purposes.

A subset U of a vector space V is said to be a vector subspace of V if it is a
vector space in its own right.

Example 5: PN[a,b] is a subspace of P[a,b], which in turn is a subspace of

C[a,b].

Given a set of vectors (v,, ... , v, in a vector space V. and scalars

cl, c2, ... , c., the vector cV1 + c2v2 + ... + CXv, e V is said to be a linear combination of
{v1, v,, ... , v.). The set of vectors (v,, v2, ... , v% is said to be linearly dependent if there

exist scalars cl, c,, ... , c,, not all equal to zero, such that the linear combination

cV, + c2v2 + + cvj = 0. (Equivalently, at least one of the vectors v, can be expressed

as a linear combination of the others.) Otherwise, the set fv,, v2, ... , vY} is linearly inde-

pendent. An infinite set S - (vI, v3, ... , )... is defined to be linearly independent if every

finite subset of S is linearly independent; otherwise S is linearly dependent [Ref. 3: p. 81.

The vectors (v1, v,, ... , v% are said to span V if every vector v e V can be represented as

a linear combination of (v,,, Y.. , vj. In this case, we write V- span(v1 , v2, .. , vY}. The

vctors {v,, Y2, ... , R form a basis for V if they are linearly independent and span V. The

dimension of V is the number of elements in any basis.

Example 6: The set {e,, el, ... , e) is the standard basis for R%, where

e, = (0, 0, ... , 0, 1, 0, ... , 0) i.e., the vector with a one in the ill position and zeros else-

where, i- 1, 2, ... , n.

Example 7: The set (1, x, . 2 ... ,.v") is the standard basis for Pj[a,b]. (Linear

independence is ensured by the Fundamental Theorem of Algebra.) The dimension of

PA,[a,b] is therefore iV+I.

8



Example 8: The set (1, x, x2, ... ,.x,... ) is the standard basis for P[a,b], and

hence P~a,b] is an infinite-dimensional vector space.

2. Inner Product Spaces

An inner product on a real vector space V is a mapping

< , >:Vx V-+R

such that for all u, v, w e V and a, f a R, the following properties hold:

1. Positive definiteness: < u, u > k O, and < u, u > - 0 if and only if u - 0

2. Symmetry: < u, v > -< v, u >

3. Bilinearity: < au + Pv, w > - o < u, w > + v, w >

A vector space with an inner product is known as an inner product space.

Example 9: V - R' ; let constant "weights" w, > 0 be given, i - 1, 2, ... , ,.

For u - (a1 ,a, ..., a.) and v- (b. b2, ... Qb, u, v e V,

<u,v> ••Zai b, w,

If w, - I for i- 1, 2, ... , n, then this reduces to the standard Euclidean inner product,

or dot product. Otherwise, this is referred to as a weighted inner product.

The next two examples are commonly applied inner products on function space,
and are analogues of the previous example. We assume a given weight function

w(x) > 0 in (a,b), integrable in the first case (e.g., continuous for [a,b] a finite interval).

Example 10: V - PN~a,b], P~a,b], CTa,b]

b<fg> - f(x) x) xjx

Example 11: V - PN~a,b]

N

<f,g> =L f(x)g(x)w(x)
XzO

(Positive dcfiniteness is ensurcd by the Fundamental Theorem of Algebra.)

9



The norm induced by the inner product is given by Ijull - iu u> .2

Example 12: For the inner products of Examples 10 and I ' therefore

lifl - [f(x) ]2 w(x) dx and

( X=IIflii [f(x) 2wx

respectively. These are sometimes referred to as 'L 2-norms.*

Two vectors u, v e V are said to be orthogonal, denoted u-lv, if and only if

<U,v> -0. The vectors u and v are said to be orthonormal if uiLv and

Ijull - Ilyll - 1. Note that the orthogonality of vectors in a space is determined by the in-

ner product being used.

The two examples which follow refer back to Chapter 1, Section A. 1.

Example 13: Formula (6) shows that the functions { 1, cos x, cos 2x,...) are

orthogonal on CO, xr] with respect to the uniform weight function w(x) - 1. A similar

computation shows that the same property holds on [-ir, x] with respect to the weight

function w(x)- L=, i.e.,

<f, g > f.. ff(x)g(x)dx.

One advantage of preferring this inner product over the standard one lies in the com-

putation of norms. Using 1lf1l -"J < f, f > , we have 11111 - 2 and 11 cos nx II - I if

n > 1. Hence the functions ( 1/2, cos x, cos 2x, ... ) are orthonormal on [- M, it] with

respect to the inner product above. Similar statements hold for the integral of a product

of two sine functions on [-x, x], as well as for the product of a sine and a cosine.

Example 14: By (7) the Chebyshev polynomials {7,(x)) form an orthogonal

class with respect to the inner product of Example 10 above on [-1,1] with the weight

function w(x) = (I - xl)-"'.

2 Recall that < u, u > > 0. We remark that in the same way we defined inner product earlier,
it is possible to define a general norm on a vector spacc which is not hiduccd by an inncr product.

10



We remark here that Examples 10 and 11 can be unified into a single inner
product on a "polynomiTrAl space V via

<f, g> - f(.) g(x) da(x),

where da(x) is a positive Lebesgue-Stieltjes measure on a measurable set E possessing
finite moments, i.e., x' dc(x) integrable, n -O,1,2,.... In Example 10, E- (a,b] R and
dot(x) - w(x)dr; the resulting expression is known as a continuous inner product, while
in Example II the set E consists of a finite number of points (0, 1, ... , N) cR, and the
associated .measure gives rise to a discrete inner product.

B. FOURIER SERIES
Let v e V, and U be an n-dimensional subspace of V having some orthonormal basis

(ul, ... , }). (Any basis can be orthonormalized via the Gram-Schmidt process - see next
section.) The vector v can be resolved into a sum of two vector components:

(1) v - (v - w) + w

where w e U and (v - w) I U. (See Figuie 3.) The vector w is referred to as the
orthogonal projection of v onto U. Since the vector (v - w) is orthogonal to every vector
in U by construction, it follows that for eachj - 1, 2, ... , n, < v-w, u, > - 0, or

(2) < v, Uj> = < W, Us>.

Moreover, since it lies in U. vector w can be expressed as some linear combination of
(u,, ..., u.

I,=w=- C1 UP.

Take the inner product of both sides with u, for each] - 1, 2, ... , n. From the assumption
that < u,, ui > - 0 unless i -j, we have the property that

< w, us > - Cs < us, us >.

Thus,

(3) ci- < v, U, >

11



via (2) and the assumption that < ul , um > -m- .I
Thus,

(4) w-= <Cv, %1> U,
',,l

and this vector represents the "best approximation" in U to v a V in the sense that of
all vectors z a U, it is the projection vector w e U which uniquely minimizes the distance
fv-z1.

Suppose now that U is an infinite-dimensional subspace of V (also infinite-
dimensional), having orthonormal basis ( .... , u.,...). Then from (1) and (4)

V-(v-w) +"• < , , >l •u,

we may write

(5) v-, < v, Ut > U,
-I=.

in the sense that

(6) limrn v-w II 0,

i.e., the norm of the "residual vector" (and hence the vector itself) v-w-- 0 as
n --+ oo. Formula (5) is known as the generalized Fourier series for v e V with respect
to the orthonormal basis ( u, }:1. The coefficients given in (3) are called the generalized
Fourier coefficients of vY V. Statement (6) is known as the norm convergence property
of Fourier series, and the "minimization property" mentioned above extends to this
infinite-dimensional case.

Example 15: Let V-CTta,b], and { S~x)}, be an orthonormal basis of
eigenfunctions (sometimes refenred to simply as an eigenbasis ) of V. Thenf e V has a
Fourier series representation

f(it) ~ 2, ,OIX)
1-0

12



v-v

Figue 3. Best App timoatom

with Fourier coefdicients

(7) elm <. Of, > -e f(x) #Ax) %ýx) dx.

In this tinction space context, norm convergence

13



is referred to as mean square convergence, and is the least squares principle in regression
analysis.

In particular, if V is equipped with the inner product of Example 13 and
orthonormal basis

[ O(x) 1 --(12, cos x, cos 2x,..., sin x, sin 2x,...)

on C-x, i] (see Example 13, Section A.2), then a suitable function fa V (and its
2x-periodic extension on R ) has a classical Fourier series

00

f(x) 4t+X( a. cosnx+b .sinnx)
amO

where

an- < f, cos x> .I .f(x) cos ndx
-f

bn" < f, sinnx > _ J f (x) sinnx.rdx,

as indicated in the Introduction.

C. GRAM-SCHMIDT ORTHONORMALIZATION

The Gram-Schmidt process orthonormalizes any set of linearly independent vectors
in an inn, r produc, space. This method will be used in later sections for differetit inner
pr dLcts on tne vector space P.a,b].

Begin with an inner product space V and any set of vcctors (vi, v2, v,, ... ), finite
or infinite, such that any finite number of elcments of this set are linearly independent.
Recursively define a new set of" 'ectors (u,, ul, ... , u,...

uk .-- IIY , k - 1, 2,

where y4 - v - w%, with3

3 By convention, ia, - 0, giving w, - 0.
ti-1

14
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These new vectors (u,, u, .. ., ... are orthonormal by construction and span the

same space as the original vectors. Note that this process occurs in two stages:

orthogonalization and normalization. The orthogonalization is accomplished by sub-

tracting w,, the orthogonal projection of %h onto the subspace spanned by

(u,, u,, ... ,u.,}. The component of v, which remains, denoted above as y,, is then

orthogonal to the vectors (u%, th, ... , Ut4,) as shown in Figure 4. The normalization is

then achieved by dividing y, by its norm, thus giving it unit 'length*.

1. Legndre Polynomials

Example 16: Let V-PC - I,1 with basis (l,.x,,...e,.r,...) and uniform

weight function w(x) - I. The inner product is then given by < f, g > - f',f(x)g(x)dx.

The Gram-Schmidt process yields the set

S3 .v3i 3

as an orthonormal basis for P[-1,1]. Since this set is linearly independent, we can

standardize the set by taking scalar multiples of these polynomials so that PJ(I) 1.

Members of the resulting orthogonal set

(Pl(X)= {1, x, -L (3x' - 1), 1 (5.3 - 3.)..

are known as the Legendre po(ynomials on [-1,1]. If the normalized Legendre

polynomials { p.(x) }). are used as the orthogonal eigenbasis for a Fourier series, the re-

sulting expansion is often referred to as a Legendre series representation; when

Chebyshev polynomials are used, we obtain a Chebyshev series representation, etc.

The Gram-Schmidt process can always be used in this way to generate a class

of orthogonal polynomials with respect to a given inner product (i.e., weight function)

on a real interval. When using the Gram-Schmidt process from the basis

(, x, x2, ... , x',...J), the orthogonalization stage producing y, results in a set of" monic

polynomials, i.e., die leading coefficient of each polynomial is one. In the normalization

stage, we are dividing by the norm II Y, 11 > 0. Thus the leading coefficient of polynomials

in an orthogonal class is strictly positive. In the next chapter, we will examine other

15



v303

Figure 4. Orthonormabimton

ways to defme these classes. It is the structure and applications of certain or these

classes with which we will primarily be concerned.

D. THE GAMMA FUNCTION

The gamma function F(t) is a fundamental mathematical object that appears fre.

quently in the representations of orthogonal polynomials as well as in many other ap-

plications. This "special function" was developed as a generalization of the factorial

flmction of the natural numbers. As we will see, the gamma function has the value

(n - 1)! for the positive integers n but it is defined for noninteger values as well.

A conventional definition for the gamma function is

16



(8) r(x) - f 'Ydi, x > 0.

The positivity ofx ensures that this improper integral converges. We now develop some
fundamental properties of the gamma function. Integration by pairts in (8) yields

(9) r(x + 1) - xr(x).

We now introduce the Pochhamrer Vmbol or shiftedfactorial, (a), to simplify our

notation. For n > 0, define

(a). - a(a + IXa + 2) ... (a+n-l) , ifn>l

and (a), - 1. Letting a - I gives (1). - (1)(2)(3) ... (n) - A!. Note that for a negative inte-
ger, (-m). - 0 if n > m > 0. The shifted factorial can be defined for negative subscripts

but we will not need this in our work with polynomials.
Iteration of (9) n times yields

(10) r(x + n) - (x),r(x)

for every positive integer n. Using this property, the gamma function can be extended

to include negative real numbers by defining

(11) r(x)- - 1 -r(x+n) for -n<x< -n+ I.

Since this expression is undefined when x is zero or a negative integer, the gamma
function is not defined for those values.

Letting z - 1 in (8) and computing directly, we have o(I) - 1. It then follows that
r(n + 1) - n! by letting x - 1 in (10). Furthermore,

r( -) . f C'" 2 dt - 2"evu

where the second integral can be evaluated by standard methods involving multiple in-

tcgrals.

17



Finally, we define a generalized binomial cofilcient as follows. For x and a non-
negative integers, define

- -
"%X x!a!

For nonintegral a, define

(x+a ) (a+l),, F(x+a+ 1)

"(1), - r(x+l) r(a+l)

1. The Beta Function
An integral related to the gamma function defines another useful function called

the beta function which is given by

(12) B(x, y)- tx't(l - t)ytdt

for x , y> 0. We now establish an important connection between the beta and gamma
functions. We start with an identity easily verified from (12):

(13) B(x,.y+ 1)- B(x, y)- B(x+ 1, y).

Also from (12)

B(x + 1, yi)-f tx(l - t)-'-dt

which when integrated by parts gives

B(x + 1, y) - -v B(x, y + 1).

Substituting into (13), we obtain

x+y
8(x, y) "-y-- B(x, y+ 1)

which when iterated yields

18



(x A,(x + A~ •
B(x, y) +Y)n B(x, y + n) + ) f tx-(I - t)t+Y-'dt.B, -- (y)n .yp

tChanging variables from t to

(14) B(x, y)=- (X +y) jAn gX-1( I __ ~yW.(x+) fo, t

Taking the limit as n --# oo, and using the fact that lira(l- --- )fi e-', we have

(15) B(x, y) = r(x) iim (x +

(The fact that we can pass the limit through the integral on the right can be mathemat-

ically justified.) Ify - I, then (15) gives

B(x, 1) = r(x) ii (x + 1)O
n! nx

By direct evaluation using (12),

B(x,I) = t-ldt _

Hence

1 (x +,)
-y-000 n! nX

which can be written as

r(x) = lim n! nx
n-.0o x(x + 0)"

Noting that x(x + 1), , (x),,,f = (.v),(x + n), we have
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n! .n -. ...
rwx - iirnn)-o (x),f(x + n)

which gives the form

(16) 
r(x) = lim --

.-• (x).

(Equation (16) was Euler's original definition of the gamma function. A separate "esti-
mation" argument may be used to show that this limit mathematically exists.) Thus by

(15),

(x +y)A

L(x, y) = rx)i m n! .

n! ny-
1

Then by (16), we have the useful identity

(17) B(x, Y) . rwxrwy
r(x Ty)

We will find this identity useful in understanding the Jacobi polynomials in

Chapter IV, where it becomes necessary to evaluate a related integral:

f (I-x)" (I+x) dx.

We remark here for future reference that the formal change of variable x - 1-2t can be
used to transform this integral into

2c,+#+' I tf (lIt)Pdt 2x+#+' B(a+I, P+ )

- 2,,+,+ r(a+) r(fi+I)
0(a+#+2)
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III. GENERAL THEORY OF CLASSICAL ORTHOGONAL

POLYNOMIALS

In this chapter, we examine some of the characteristic properties associated with
classes of orthogonal polynomials. Some of these properties provide alternate means
of defining a. class. These alternate definitions often provide a straightforward way of
producing a specific result that may be very difficult to derive otherwise.

Throughout this chapter, we let [p•(x)}:.0 denote a set of real polynomials with
p,(x) of degree n, i.e.,.

(1) p,(x) = k, x' + s., kn > 0.

Recall that these polynomials are said to be orthogonal on an interval [a,b] with respect
to a continuous weight function w(x) > 0 on (a,b) if

(2) < pm p, > f pm(x)pn(x)w(x)dx - h,-' '6m,

where the normalization h.- o 0 is chosen to simplify the expression of certain formulas.

Note that since

llp 1,1I2 -j•b[ P(X)]' W(X)X =h,;1,

it follows that k, > 0.

A. POLYNOMIAL EXPANSIONS.
We begin by showing that any real polynonmial q,(x) of degree in on [a,b] can be

written as a linear combination of orthogonal polynomials (p,(x))Z. 0:

m

(3) q,(x) -. aim pj(x)
1=0

for constants x,.,•, i = 0, 1, 2, ... , mi.

The proof is by induction on the degree ti. Since qm(x) is a real polynomial, we
write
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qmjx) - am -V' + bn x'-l +

where a,, 0. For m - 0, (3) reduces to a0 - oeoo k. using the form for po(x) given in (1)

and a,,, is uniquely determined.

For the induction hypothesis, suppose that for m > 1, we can write any polynomial
of degree m - I as a linear combination of [ p.(x) }-:

q,- 1(x) = a1mA--
1-0

Since q.(x) - (a.[k1Q)p.(x) - q.,_1(x) is a polynomial of degree m - I the induction hy-

pothesis implies there is a representation

M--I

q,(x) - PM(X) - Z i .- , PA(x).km /=

Now set a... - (a,/k.) and the result (3) follows. [Ref. 4: p. 331

Using the theory or Fourier series developed earlier, we next determine the coeffi-

cients a,, explicitly. For i = 0, 1, ... , m, let c,,. = 'I,/.4/1'7 and let

A(x) pAx) I k PA).
11 P1(x) 11

Then by construction, { 0,(x) j, is an orthonormal set of polynomials. Writing (3) as

m

we see that the right-hand side can be interpreted as a (terminating) Fourier expansion

of q,(x). Hence the results of Example 15 in Chapter II, Section B may be applied. In

particular, by (7) in that section, the coefficients c1 , are given by

cI., = < q,,, ,1 > = fa qm(x) 01(x) w(x) dx.

Changing back to the old variables,
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aim - h<q,np, P1> "hsf q(x) p&x) =x)dx.

We are now in a position to show that the orthogonality property

(4) fd pn(x)pm(x)w(x)dx - 0 , m 0 n

can be expressed equivalently as,

b
(5) fa p(x) x"w(x)dx - 0O, m < n.

To see (5), substitute the form (1) for p,(x) into (4) where m < n. The linearity of the

integral gives (5). On the other hand, since x- is a polynomial, we can write x, as a

linear combination of the orthogonal polynomials, so (5) gives (4). Note that (5) implies

each p,(x) is orthogonal to every polynomial of lower degree. [Ref. 4: pp. 33-34]

B. THREE-TERM RECURRENCE RELATION

The three-term recurrence relation is a useful result which holds for any three con-

secutive o~rthogonal polynomials:

(6) p(x) = (A, x + B,,)p,,(x) - C, pn_2(X) , n - 2, 3,4,...

where A., B., and C, are constants given by

A n =-! Bn.- An( Sn S- nk- n2>0A -,",>° B,-A,- ,,,_, =• k,,k,,,_.2 h,,_..2 >0
kn= 1 k' kn-t Cn - (kn-01 hn-t O

The recurrence relation is valid for n - 1 if p-, - 0 with C1 arbitrary. In this case, the

formula for A. also holds for n - 1. (In the contrapositive form, this statement is a

powerful tool for showing that a polynomial set is not orthogonal.) [Ref. 5: p. 2341

To prove this, we begin by considering p.(x) - (kj/k,_,) x p,(x), a polynomial of de-

gree no greater than (n - I). We expand it in terms of the orthogonal polynomials

{p,(x))}'. via the technique of the previous section to obtain
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(7) p,,(X) - x,..1 x
4n-I

The coefficients *I,, are determined by

(8) Ottn-I /-qh .k < XPM I(X) ,'PA.) > , n -I

Because

<XPý_1(.).AX)> M x p._l(x)p~x) w(x) dx - < p-,.(x) x p(x)>.

it follows that for i:9 n - 3, xp(x) is of degree no greater than (n - 2). Hence

<p,, W(x) ,xp1(x)> - <xp._1(x) ,p(x)> - 0 , ie n - 3,

since p..,(x) is orthogonal to every polynomial of lesser degree. Thus the constants

.,-, •_, ... , q,3, are all zero, leaving a,2,, and _ With this knowledge, (7)

becomes

kn-Pn(X) - k_- xp'-..(x) ",- n2-I.-.2~.(x) + ,.-•-p,,-.(x).

Setting A, - kjk..., , B, - , and C, - - a...,., then rearranging terms gives (6).

To determine C, explicitly, we write

CR - "-2,- M "- h._ <pn._I1 (X) ,P.-2(X) >

from (8). Since

xp,_2(x) - kn. 2xn-I +

Mkn-[k-I n-I+
-II

- Pn, x + Z/Mn-2 #]

we can write
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Ca, - h*2A- CPn-1(x) ,PN_1.(X) + E Pp,..2 pA)>
J-0

Using the properties of the inner product and the orthogonality property of the

polynomials, we obtain

Am - h._2 <h ,..2  An kkn,.. 2 h-2
C,-,AN..2  -i- <p,_(x),p,..,(x)> -h,_, A,,#1  (k,. 1)2 hAj

as given in (6). [Ref. 6: p. 81
Into equation (6) we substitute the expanded forms of the polynomials

p.(x), p...(x), p,.Ax) from (1) and the constants A., C. from above. Equating coeffi-
cients of x-' gives B.. Since k. > 0 and , > O, it follows that A. > 0 and C, > 0 and the
proof is complete.

The nonnegativity of the constants A. and C. is important for the converse of the
result in (6). Favard showed that the existence of a three-term recurrence relation in the
form of (6) implies that the polynomials of the set are orthogonal with respect to some
weight function over some interval using Stieltjes integration (Ref. 7].

We observe that in order to generate the polynomials of an orthogonal class with
the recurrence relation (6), we need the sequences of constants A., B., and C. together

with two of three consecutive polynomials in the class. Other techniques provide what
some authors call a pure recurrence relation requiring only two of three consecutive

polynomials to define the class, because the constants as functions of n are contained

explicitly in the recurrence relation. The recurrence relation derived in Chapter !, Sec-

tion A, 1 for the Chebyshev polynomials is an example.

C. CHRISTOFFEL-DARBOUX FORMULA*

The Christoffel-Darboux formula is an important identity which can be derived from

the three-term recurrence relation. The identity is

ah, k. , pn+,(x)p,,(y)- pn(x)p,+,(y)
(9) 2ihpX)Ply) -

J-0 kn+,!x --

To prove (9), note that from (6) we have

pj+,(x) - (Aj+,x + B4+,)plx) - Cj+,pj_,(x)
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which we rearrange to give
(10) xpxv) m.P-j I . -V) A(+ I Pj +CX _ I.(X)

X Aj~X4 j.jX) AJ41  AJ+

and similarly

These recurrence relations are valid fori -0 if we set C, -0 and p_,(x) - p_.(y) M0.
Multiply (10) through by p(y) and (ii) by pAx), subtract the results, and then mul-

tiply through by / to obtain

hi (X -A PX) PX A Pj+ I(X)px Y) - Pj+ I(.V)'Pxx)1

+ [p-, x);/•,(v) - poi(,)pxx)i.

Summing overj from 0 to n yields a telescoping series
Rhk
I, Lipx~/) , ,

(x -v)>:jpjx),Pxy) W*n- + [pR+j(x)pn(y) - pn(x)pf 1(y)]

from which the identity (9) follows. (Ref. 4: p. 391
Now subtract and add the quantity p.(x) p,,(x) to the numerator of the right-hand

side of (9) and let y tend to x to obtain a limiting case of the Christoffel-Darboux for-
mula:

(12) j [I') ]2 P;+ (x) p,(x) - P,(x) P"+1(X)).

We will use (12) in the next section.

D. ZEROS OF ORTHOGONAL POLYNOMIALS
In Chapter 1, we observed that the zeros of the Chebyshev polynomials (T,(x)) are

real, distinct, and lie in the interval (- 1,1). This principle extends to any class of
polynomials orthogonal on the real interval [a,b].
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To see this, choose n > 0 and suppose that p.(x) is of constant sig in •ab]. Then

< p,(x), p.(x) > # 0, which contradicts the assumed orthogonality. Thus by continuity

(and the Intermediate Value Theorem) there exists a zero x, @ (a,b).

Suppose that x, is a double root. Then p.(x)/(x - x,) would be a polynomial of de-

gree (n - 2) and so

0- < p.(x) ,p.(x)/(x- X 2 > - < I, (p,(x)/(x- x1))2 > >0

which is a contradiction. Thus the zeros are simple.

Now suppose that p.(x) has exactlyj zeros x,, xl, ... , x, * (a,b). Then

P(XXX - X1Xx - x2) ... (x - X,) - q.J (XXX - X -X2)2 ... (X- X-)2

where q,, (x) does not change sign in (a,b) and

< PAWI(X),-'X, XX -X2) ... (X - X)> - < q.- W- (X),(- X,)A(- 4)... (-x--9 >,

Since

<' W,_ x, (X - -V)A( - x22..(X - )2 > 0/ 0

and

< p&~), (x - x,)(x - x2) ... (x - x> - 0 forj < n,

then it must be thatj 2: n. The Fundamental Theorem of Algebra precludesj > n and so

we concludeij - n. [Re£f 5: p. 2361

Thus all the zeros of p,(x) are real, simple, and lie in the interval (a,b), and so may

be ordered

a < xn < x2 ,n < xn < "" < xn. < b.

The interlacing of zeros of p&(x) and p..,(x) follows from the Christoffel-Darboux for.

mula. Recalling that the leading coefficient k. is positive for all p.(x), then (12) gives

(13) P+41 (X) P(X)-P'n(X)Pn÷I(X)>O, -o <x<0oo.

Let u and v be adjacent zeros ofp.(x). Then

(14) p'.(U) p.(v) < 0
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since the zeros are simple. At these zeros, inequality (13) reduces to

and

-P',(v) p+ 1(V) > 0.

Multiply these two inequalities together with (14) to conclude

P*+j(U) pn+,(V) < 0,

so p,(x) has a zero between each pair of consecutive zeros of p,(x).
Now let x, denote the largest zero of p&(x). Observing that p.(x) -- oc as x -. c,

we must have p,(.) > 0, and so by (13)

p, I(xQ,) < 0.

But p.,4 (x) -* c* as x --* co, so p,.,(x) must have a zero to the right of x.. Similarly,
p..(X) must have a zero to the left of x,., the smallest zero of p(x). Thus ail n+I zeros
of p4.t(x) are accounted for and interlace those of p.(x) [Ref. 81:

a <• Xtjw.I • <Jgl.X < "ga,n¢- < -" < •ktn-tl < •~t xt t < 4. -+ ,+, < "-v,,-,+t < -gv,. 4 -vn+l *+t < b.

L GENERATING FUNCTIONS
The function F(xt) having a formal power series expansion in t

F x,t)- - f,

is said to be a generatingfunction for the set {f.(x)) [gRef. 9: p. 1291. For an appropriately
chosen generating function, the generated set [f.(x)) is a class of orthogonal polynomials.
By defining a class in this way, properties of the polynomials can be dcrived from the
generating function itself.

For example, consider

(15) f(xt) - (I - 2.vt + -
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which for fixed x is the Taylor series of F(x,) centered at t m0. If we restrict x to the
interval [ -1, ], then by considering the singular points of F&.,t), we may conclude that

the series is convergent for I tI < I [Ref 4: p. 281. Thus we can determine f/(x) for

n-O, 1, 2,... by

(16) _L _C~.~ [(1 -2.t+ t2)21....
n! 8tn

Equation (16) yields fs(x)- I, fj(x)l*x, A(x)---`--L, etc. We also note2 From
(16) that

"XV n!anL

.I n!' (I - t- ].

n! L
m 1.

We now derive some basic properties of thefi(x) from the generating function in (15).

I. Recurrence Relation

Differentiating (15), we find

(17) O t I- _2x +12)-1=1

ant

(18) ' =(x -)(1- _ 2X + t2)-/ - n -at E

nWI

OF OFSic (x - t) t -L- - 0, we hvSince (x0~-:~-~ehave
ax a

(x - t)f_,!n'(x)tm - 'Z nf.(X), = - o
Owl 0tMl

which becomes

Z: Xf,' (X): - Z: 2: 4 1-(X)
n-I nI RMI
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Sincef.(x) - 1, we can start the sum on the right side at it- 0, then re-index so that it
starts at n - I again. We then find

x,.1-Zr-; Lm) r fW

NM-I n-I

Equating coefficients of t then gives

(19) vf,'(x) -n,,•(x) - •(v), t, n k.

Rewrite (17) as

(20) (1 - 2.x +t)- -=Zf.,(x),-' , t , 0.
ft-I

Substituting the appropriate expressions from (20), (18), and (15), respectively, into the
identity

(I - t2)(, - 2xt + t2)-'2 -(2t) (x - (i - 2xt + t')-'12 (I - 2xt +

now gives

((2t2 xff(x)tf t - Zfj(x)t,

which, upon rearranging, becomes

ZI.;1 (~t~ Zf;-t (x)t" - YJ 2nfjj(x)t" - Zfft(x):"
A-I n-I n-

Equating coefficients of to and gathering terms yields'

(21) (2n + I)f,(x)-;+, (x)-f;.- (x), n, k

Substituting (19) into (21) gives

xf'(x) -f;+, (.v) - (n + t)f(.)

which by a shift of index from n -+ n - 1 becomes
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(22) 4r., (x)-h%(x) - nfn,,(x), n k 2.

Substituting again from (19) gives

(23) (x2 - 1)f"'(x) - nxf.(x) -,,f_,(r),

Multiplying (19) through by (xi - 1), we have

X(X2 )h,(x)-n(x2 - 1)- (f X- _)f., (f).

Now substitute for (x3 - I)f.'(x) and (ac - l)f.,A (xr) from (23) and gather terms to get

(24) nf.(x) - (2n - 1) xf.,(x) - (n- I)f-,2 (x), n k 2.

Equation (24) is a three-term recurrence relation for (&rx)). The advantage of

this form is that beginning with f.(x) and fj(x), we can now generate any member of

{If(x)} by iterating (24) and thus avoid the differentiation in (16). Note that since

fo(x) - 1, fJ(x) - x, (24) implies that {fi(x)) is a set of polynomials. [Ref. 9: pp. 159-1601

2. Ordinary Differential Equation

We continue the same line of reasoning to extract additional information about

(J.(x)}. Differentiating (22) yields

(25) xf; 1 (r) -f,(xr) - (n + f0_1, (X).

From (19) we have r., (x) and, after differentiating, fZ.-* (x). Substituting these ex-

pressions into (25) gives

X [xfn"(x) - (n - 1)f8(x)] -f4(4) - (n + I)Exfn'(x) - nf,(x)J

which when rearranged becomes a second order ordinary differential equation

(26) (1 - x2 )fj(x) - 2xf,'(x) + n(n + l)f.(x) -0.

The {f.(x)) are solutions ofr(26) for n - 0, 1, 2, .Re. 9: pp.160-1611

3. Orthogonality
Rewriting (26) as

(27) - [(I - + n(n + 0
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we recognize the structure of a Sturm-Liouville eilgenvalue problem. Since the points

X M ± I are singular points, we require thatf.(x) andfJ'(x) be finite as x -+ ± i. From the

associated theory of the singular Sturm-Liouville problem, we conclude that the Vl(x)}

are orthogonal on the interval (- 1, 1] with weight ftanction w(x) - I.

Alternately, we combine (26) with

d [(I-'s.€) +,,,<, + I)s.(X) -0

where n 0, m, to obtain

c2 .(J) -1L [(1 - ')f.(X)] -fm(x) -- [(I - ')s.'(X)]
(28) d x )1(] x2fx()+ In(n + 1) - ,M(, + M)AW*)M(*) - .

Since

d [(1 - x•){s.(x)fv() -f.'(x)f.(x))]

d d
=x [An Ws() -V 1f.,)'( -(.V ) (Z - 1)sf.'(X)]

-f M(.) -A [(I - x2 )fnD(X)] -f/(x) •- [(I - XI)s.(.,)

we can write (28) as

d r , 1)ffm( n(X -f )f~x}

S--[ -ms(x) - + [_I -M + f - m]fn(x)fm(x) o

or

(n :- m)(n + m + l)fn(x)fm(x) - [(1 X2){fm'(X)fn(x)

Integrating from x - -I to x - 1, we obtain

(n - in)(n + in + 1) 1f.{(.)fm(x)dv - [(I - 2){fM'(x)fn(x') -fm(x)fn'(Xv)1]'

Sincc (I - x) - 0 at x - ± 1, we have
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(n - m)(n + m + i)J fn(x)fm(x)dx =0.

I

Recalling that n # m, we conclude

i.e., the polynomials {f,(x)} are orthogonal on the interval [-1,1] with respect to the

weight function w(x) = 1. [Ref. 9: pp. 173-174]

These are the Legendre polynomials that were previously defined using the

Gram-Schmidt process. Thus thef,(x) of (15) are in fact P.(x) and (15) may be written

(29) (1 - 2xt + t2)'-1 2 = YZ Pn(x)tn,
n=O

establishing the equivalence of the generating function definition with the Gram-Schmidt

definition.

Legendre and Laplace concluded that the Pn(x) in (29) were polynomials of de-

gree n in the variable x by examining a series expansion of the function

0 [n /2 )
(1-2xr+r2)_, 2  

- Z (-)"(/22) ,_'m (2c)n _2m
nAo .=o m! (n-2m)!

They reasoned the orthogonality directly. From (29) we write

(1-2xr+r 2)-'12 = Z P,(x) r'
1,,0

and

(l-2xs+s2)-1 /2 = E P/Cx) .
j=0

Multiplying these power series together via the Cauchy product formula yields
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00 R

ý1-ý,+r' ý1-2_v+s' 11=.ok=o
I ZZ P I(X) Pn jx) rY.n

n=O k+Jmn

Integrating from -I to 1 with respect to x gives

-~1-xrrdx 12ss Z[J P~x) Pi(x) dx r'S
f' -- 2 1

Through tedious calculation, the left-hand side of this expression becomes

Slog +

a function of the product rs. From this we conclude that the coefficients of the terms

in the series on the right-hand side are zero when i and j differ, i.e.,

Ell PI(x) Pj(x) dx =O, i j

and the orthogonality is established. Finally,

00

(l-2xr+r2)-1/2 1x~ =-i- Zr r
n=O

* or P,(l) - I and so the P,(x) are in fact Legendre polynomials. [Ref. 81

In a similar fashion, the norm of the Legendre polynomials can also be obtained

from the generating function. Let

c = h' =5 [ P(x)]2 dx.

Square both sides of(29) and integrate with respect to x on E -1,1]

34



mo ~oI ~lPm(x) Px)dx fM+" 7-2 -+ t

MI-O n-0 ( lE -x~

By orthogonality, the left-hand side is zero unless rn - n, while the right-hand side is
integrable in closed form:

00 2 n, -1 IE C = "52t In (1 - 2xt + t2)

n-O

± In (

This function can be expressed as a difference of two logarithms, each of which has a
convergent Maclaurin series expansion in (- 1,1). When combined this yields

ZCn t2n 0 2n ) 2n.

2

Comparing coefficients of On' on both sides gives q, =T 2

Since there is no systematic theory for determining generating functions, finding

one for a polynomial class can be a problem. The work above bears this out. Unfor-
tunately, the proofs above do not easily generalize to related classes. With this in mind,

let us summarize the key steps in proving that (15) is a generating function for the

Legendre polynomials. First we established that f,,(I) - I for n Ž 0. Next, we showed

that

(I - 2xt + t2)-'12 = •f•(.C)n 1

n=O

for f,(x) a polynomial of degree n in the variable x. Finally, we showed that these

polynomials were orthogonal on the interval [-1,1]

EI fn(x)fm(x) dx o, m 9 n.

These three points are sufficient to show that the generated class is the l.egcndre class
of orthogonal polynomials.
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We now provide an alternate proof attributed to Hermite. Our interest in this

proof is mainly the technique which suggests a method of generalization that we will
take advantage of in the next chapter.

We begin with (15) reproduced below

(I - 2xt + t Zf(x) t"~.
n-O

Multiply both sides of this equation by x* and integrate from -I to I to obtain

( f k dx = :n f'xkfnx dx.

(30) _ :t"X X
SI 41 - 2xt + t' --1

Now change variables from x to y via

(I - 2xt + t2 )-' 2 = - I - ty

giving

t(l _y2 )
- 2 + y, dx = (I - ty)dy.

The left-hand side of (30) becomes

L, [It I-_Y) +,],k
S 2 (1-ty) (I -ty)dy

or simply

Expanding the integrand of this last expression via the Binomial Theorem, we obtain

tj (I 2)j yk-j dy.

J=O
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When written as

k

we can identify the form as a polynomial of degree k in the variable t. Comparing this

form to the right-hand side of (30), we conclude that

FIxf nx d x - 0, frn > k,,f'Xkfn(X)dXmO o

-l

i. e.,f.(x) is orthogonal to all polynomials of lower degree. The same argument as before

gives f&(l) - I for n ý 0 and the proof is complete.

F. HYPERGEOMETRIC SERIES

The term "hypergeometric" was used in 1655 to distinguish a series that was "be-

yond" the ordinary geometric series 1 + x + x2 + -... In 1812, Gauss presented the power

series

ab x a(a + l)b(b + 1) x2  a(a + l)(a + 2)b(b + l)(b + 2) x.3
l+ I+ c(c + 1) 2! + c(c + l)(c + 2) J-T +

c : 0, -1, -2, ... which is known as Gauss' series or the ordinary hypergeometric series

[Ref. 10].
Convergence of this series for Ix < 1 follows directly from the Ratio test. By

Raabe's test, convergence can be shown for Ixi = 1 when (c - a - b) >0 [Ref. 11: p. 51.
Gauss also introduced the notation 2F1[a,b;c;x] for this series. Note that

aF,[a,b ; c ; x] maybe considered as much a function of four variables as a series in x.

[Ref. 12: p. 1]
With the shifted factorial, the ordinary hypergeometric series can be expressed

2'l [a,b ; c ; x] = (c), n! x.

n37
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Below are some examples of important functions which can be expressed as ordinary
hypergeometric series.

Example 1: log(l +x) -x 2 F,[l, 1 ; 2 ; -x]
Example 2: sin-'(z) - xaF1[12, 112; 3/2; x2]
Example 3: tan-'(x) I x 3F,[1/2, 1 ; 3/2; -x2]
The generalized hypergeometric series is formed by extending the number of pa-

rameters, an idea attributed to Clausen [Ref. 11: p. 40).

(a,)N(a), ... (a.),
.F.[a1, a2,..., a,; b, abb 2 ... ,b,;xJ- (bt)(b.) x...](b 3)n! "

M-O

Note that since (a),/(a), - n + a, a hypergeometric series c. xr is characterized by the
fact that the ratio ,,.,./c of coefficients is a quotient of two polynomials in the index n,
i.e., a rational function of n.

The Ratio test can be used to show convergence for all values of x when r < s and
for IxI < 1 when r- s + 1. When r > s + 1, the series diverges for all x , 0 and the

function is defined only if the series terminates. The series terminates when one or more
of the numerator parameters a, is zero or a negative integer [Ref. 11: p. 451. This is an

important characteristic of the hypergeometric series that will be used later. A power

series that terminates gives a polynomial which is defined for all x. In this case, the pa-
rameters bl, ... , b, may be negative integers as long as the series terminates before a zero

is introduced into a denominator term.
Examples of the generalized hypergeometric series include familiar functions such

as:
Example 4: (1 + x) - 1F0[ -a; - ; -xJ

Example 5: e - OF0[ - ; - ; x]

Example 6: sin x - x O,[F - ; 3/2 ; - e14]

Example 7: cos x -OF,[ - ; 1/2; - x2/4]
Example 8: The Bessel function of order at

01X x/'O [-;+ I ; -x2/14]
J(x) - (+ I)

where dashes indicate the absence of parameters, i.e., when r - 0 or s = 0. We will also
use a common alternate notation
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for either the ordinary or generalized hypergeometric series. [Ref. 12: p. 41

I. Chu-Vandermoade Sum

The Chu-Vandermonde sum

(c-),,
2FC -n, a; c;lJ- (C a),,

is one of many useful summation formulas. Since this one will be used in a later chapter,
the proof is provided below.

Basically, this is a consequence of the General Binomial theorem

(l- x)f - (alk t
(lnk

Starting with the identity (I - x)-'(l - x)-6 - (I - x)--, expand both sides. Us-

ing the Cauchy product on the left side and the General Binomial theorem on the right,
we have

,- (a+b),,

nMO n-O

here c, (a)k(b)._ Equating coefficients of x', we have

S(a)k(b)n-k (a + b),,*= l)jt(1),,_k= (lOn"

In order to express the left side as an ordinary hypergeometric series, 2F,, mul-
tiply both sides by (1). and use the identity (1)./(I)._-(- (-1)*( -n),, to obtain

(31) kO ( ()k (-I)*(b)t_.k- (a +b)f.(2: (1)'t
k-O

Next,
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(.. -3 )k(b),_ - ( -2( -t) ().

- 1 -)"( - 1)"-(bXb + 1) ... (b + --k - 1)

-( l'-bX -b- 1)...-b - x+ k+ 1) +-; n i

(-b-n+ 1)n-(-" -b -, n + "

Using the above result, equation (3 1) becomes

I ( .___-___R (a + b)n

*.o (1, (- -n + 1),

Let c -b - n + 1, and substitute to get

F,[-n,a'c; 1]-(-1f (-c+a-n+I)R

(-I)(-c + a - n + )...(-c + a)

(c-a+n- )...(c- a)

(c - ),

(c)4
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IV. JACOBI POLYNOMIALS AND SPECIAL CASES

This chapter focuses on the orthogonal class known as Jacobi polynomials, P ,"(x).
Until recently, the classes of orthogonal polynomials considered "classical" were usually
given to be Jacobi, Gegenbauer (also called ultraspherical), Chebyshev (of first and sec-

ond kind), Legendre (also called spherical), Laguerre, and Hermite. The Jacobi
polynomials hold a key position in this list since the remaining classes can be viewed as

special or limiting cases of this class. Today, the classical orthogonal polynomials are
taken to be special or limiting cases of either of two very general orthogonal classes

known as the Askey- Wilson polynomials and the q-Racah polynomials. between which
we will establish a formal equivalence. Because of their complexity, these classes are
described in Chapter VI after the necessary additional theory has been developed.

The results derived in the text that follows are arranged in tabular form by class at

the end of this chapter.

A. JACOBI POLYNOMIALS

1. Definition / Orthogonality

The J'cobi polynomials FI•"(x) are generated by applying the orthogonalization
step of the Gram-Schmidt process to the standard basis (I , ... ) of PC -1,1], with

respect to the weight function given by a continuous beta distribution on E -1,1]

W X; , 0- 4),0 + X?'

for t > -I, > -1, i.e.,

f' Pg"x 11(x) Pm" 10)(x) (I - xfm (I + .4' dic - ihn(* P)]_ 4.l

The Jacobi polynomials can also be represented by hypergeometric series

(l) p(Z1,)(x).(a+l n [-n+n+ +P+ 1.1Xp" N - n! 2FI- a + 1 ; 2 '

This set or polynomials is thus standardized (as was done for the Legendre class in

Chapter II, Section B)
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R M n!

We shall demonstrate that these two characterizations of the Jacobi polynomials are

indeed equivalent.

To show that the polynomials defined in (1) are in fact orthogonal with respect
to w(x; a, 0) - (1 - x)r(I + x)j on [ -1,1], it suffices to show that FP'PW(x) is orthogonal
to one polynomial of degree m for m - 0, 1, 2, ... , n- I. This is because any P( .e"(x),

0 : m 9 n - 1, can be expressed as a linear combination of such polynomials. While any
polynomial of degree m could be used, we choose (I + .x)' for reasons that will become

apparent.

To establish orthogonality, we consider

<P•I(x), (l+)"'> - p",(x) (l + x)" (I - x) (l + x?)P .<I

By (I), the right-hand side becomes

n! (a + 1), k! 2k -0

k=O

Using the last result of Chapter II, Section C.I, the change of variable x - I - 21 yields

(a + l)n-'[(-n)k(n+at+fP+ l)- ) 2 "++'N+'+1 B(k+ca+ I ,m+ + l)]n! (•+ 1), k! 2t
k-O

I+), (-n)k(n+a-l-+l)k 2m+u+p+1 r(k+ + I)r(m+P+I) 1
" n! k! (a+1)kr(k+m+a+jI+2) '

Identities for the gamnma function allow us to simplify this expression to the form
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2*4+ rfat + n + t)r(m + P + 1) .•(-n)k (" + C, + P + t)4

r(m +at+ + 2) ~ ,(m+ at+ P +2),tk!
kno

which can then be written

2"+P+÷I r(i+ n+ I) r(m ++ I) + , -n,n++ +P+ I I
"r(m;+T+at +2) P'[ m+a+ ;ij.

The Chu-Vandermonde sum rrom Chapter II allows us to write this as

"++ r'(a + n + I) F(m + P + I) (m + I - n).
r'(m T- cc +- P + 2) (m 4-o 4/• P-2).

Thus,

< P.O0(x) , (I +X)I" > -M -
0, m -O,1, 2...., n- I

where

n! 2r+'+6+1 r(n + t + t) r(n + # + 1)
r(2n + a + P + 2)

which justifies the orthogonality. It is possible to extract the value of [h8,J- by modi-

fying this argument, but we defer this computation till the next section, where it %ill be

easier.

2. Ordinary Differential Equation I Rodrigues' Formula / Norm

We begin deriving the ordinary differential equation for the Jacobi polynomials

by noting the general formal result:

(2) Fs,..a 1a +1 .1,
dx bl, ., b, .x b +b I,_ , xJ+

This can be seen from the definition of the generalized hypergeometric series by

writing
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-ý $ [ai:... :a"r~ (°0.'-(),,
dx b, ... b d, (bl), ... (bS), k!

)a k' =) ... (,, x'
JR.•I(bl),t... (b,),t ( l- )

S(a1i)+l ... (a_),+l x
vm o (bl),+l ... (b:),+ I k!"

Noting that (a)*., - a (a + 1)., we have

d [bat: ... : X] a,... a, (a, + 1)k ... (a, + 1) X

" Lbl,.., b "i ... b.Z (bi + l),...(bs+ l), A!

from which (2) follows. Differentiation of the hypergeometric series is justified by re-

calling that the power series is convergent for I x I < I when r - s + I.

We apply this result to the Jacobi polynomials to obtain

d ~t #()(a , -M~+lt# I ' 2J

=(-=\ (c,+l),, -n(n+a+#+l) 2FI Iln+a+#+2  -x1"2 n! a + I I~ ot + 2;
(n + at + + 1) ( + )- (n - 1)! 2 .'+1 2 )

""2 (n - I)! (ot + 2)4-1 aI X

which simplifies to

(3) €--- P(,"P)(x) l (n + Ct + ft + ] ,,,• ~~)
(3) dpn(*,S)(X) -inI (

dx 2 ")

With these results established, we now consider the orthogonality property of

the class: set

(4) f Pt"1)(x)) Pm•' P)C.,) (I - .)*'(l + xý'dx - [h•1. P)}- ,

By (3), we can write
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2 M+ fP•+(x)( - ' Ldx s+ dx.

Integration by parts yields

-2[ d 1p,

(5) ez~- P7..I _ (Pr~x I-x (I + x)?) p.'+ '(:

noting that the boundary terms vanish, so that

(6) n) -2 (-I, P-1)(X) ,r,+,(X) (I - x)'• ( + X?_- d(df -- 2 P M_ l

where

(7) x.+,(x)-(1-x2) d P."',(:) - .t(l+x)P•"',')(x) + Pn-e',P)(X)

is a polynomial of degree (n + I). Thus by (6) We may express q,,I(x) as a linear combi-
nation of Jacobi polynomials

nm0

We would now like to show that c - c- - c, - 0, so that only the last term

of the summation survives. The constants c,, j = 0, 1, 2, ... , n can be determined by

substituting this expression for q,,.1(x) into (6) and using (4).

n+1

-M +;+ # c (J1 , P -)(x) piI-, '')(x) (1 -. x) (I + X)- d.r.

For each #? s n - 1, by (4) the lcft-hand side 1.. - 0, but the right-hand side is

zero unlessj - m + I -< n. Thus
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0.. CM+, V,..-M+I - i.e.,

c-0,P9n

which means from (6)

(8) 2, . R ,<.-, -

and

(9) qM+ I (.)-- cn+I PI(•Ii P-I)(X),

To determine the remaining constant c,, we note that by (7) and (9)

(l-XI) -L P.'"(x) - C (I+X) Pn'*'(i) + p (I-X) •P )€(.) - c.M I,
dx

Letting x - 1, then from the hypergeometric series definition of the Jacobi polynomials

we have P.1 "(I) ()+l). which givesn!

(a+))

it! ,C* (n+l

and so

(10) c.+, - -2(n+ 1).

Combining (5), (6), (9), and (10), we have

To obtain the second order ordinary differential equation, change n-. n-l, a -* a+1,

and #--+I in (11) to give

d r)(•)(I-x+ +,#

Then by (3),
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[x i+a+fll dxddx In~a~+12 d p~s.O)() (lx),,l (lxya - -. 2 ni P~ne'.O(x) (i~x),, (l+.xp',

i. e., y = , P'O)(x) satisfies

d I(t-x)"+(l+xye+I " -(n-+a+#+l) (I-x)' (1+x)fy.
dxL dx

Using the product rule to expand the left-hand side, we have

(1-x)" (l+x)P [-(a+1) (1+x)y' + (g+) (1-x)y' + (l-x 2 )y",,

= -n (n+a+g+ 1) (1-x)' (I +x)Oy

which, when simplified, becomes the second order ordinary differential equation for the

Jacobi polynomials y = P,`P)(x) :

(12) (l-x 2 )y" +[ (fl-a) - (a+#+2) x ]y' + n (n+a+f+l)y = 0.

The reader is invited to compare this result with the second order ordinary differential

equation for the Chebyshev polynomials {7T,(x)} given by Equation (5) in Chapter 1.

By iterating (11) k times, we obtain

dxk [ P(,," kX) (I -X)s (I +X)f] = I1 k 2 n i) [p,;,k, Pl-k)(X) (I -x)k (1 -)k]"; n 2n(+ ) : Xc (+)

Setting a -1- a+k, and fl -. P+k gives

(_-I)k d k _),k( XPk ,.A -- )X

(l-x)a (I.+x)p Pn:(axw= 2k (n+1), dxk -

or equivalently in terms of' the weight function,

D(, ){.. fi (- l)k dk
w(x;, ) P)"4+k0 ,(x) = 2(_)k d.¢ [w(x; a+k, /+k) P,("+- P+k)(x)]

2" (n+lOk dx.C

the general Rodrigues' formula for the Jacobi polynomials. Letting n = 0 and noting

po' P)(x) = I gives

(l-x)" (I +x)fP P)(x)-k=k! d k [(l-x)+k (I 1'
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or

( 1)k d'
a, P12, ')(x) [w(x; +k, B+k)

2k k! dxk

the classical Rodrigues' formula for the Jacobi polynomials.

Finally, we can use these ideas to obtain the value of [/•'•]t. By direct com-

putation,

-x)" (I+xI dx

2 *+fl++ F(a+1) r(#+l)
rca+#+2)

We will use this below. Combining (8), (10), and (4) when m = n yields

4(n+1) fj P-i I[hn(*P)]-l = n+a "+#' [h(; T

Making the changes n -ý n-1, a -- e +1, and -+ Pi+1, this may be rewritten as

" n++l+ ["0+ 1 1

Iterating this relation n times produces

S= On++, +I)

F(2n+a+#l+l) 2 2n+*'++ F(n+a+l) r(n+fl+I)
22' n! r(n+a+fl+1) F(2n+a+fl+2)
2"+"+' F(n+a+ !) F(n+gl+ 1)

(2n+a+f+ 1) n! r(n+a+l+ 1)"

3. Generating Function

As was mentioned in Chapter 111, finding a generating function for a class of

orthogonal polynomials can be a challenging task. Fortunately, a generating function

for the Jacobi polynomials can be found by mimicking a technique attributed to Hermite

in his work with the Lcgendre polynomials. (See Chapter III, Section E.3.)
We seek a generating function
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(13) F(,x) c, R(" #)(x) rn
n-O0

for constants cq, n = 0, 1, 2, ... , with

fJ 'P)(x)xk(I - x)" (I + x)dx = 0, k < n.

To begin, we multiply (13) by x* (I - x)- (I + x)# and integrate from -I to I to obtain

(14)1 Xk F(rX) (Il -X),(I + x) dx= c [fj'1 p(,,O)(X)Xk (I -X),(I + x)# dx] r'.

Note that the summation of the right-hand side is from 0 to k because the orthogonality
property makes each term zero for n > k. We observe that the unknowns to be deter-

mined in (14) are F(r,x) and cq. When one is given, the other can be found, so we first
consider the left-hand side of (14)

f, x k F (rx) (I - x)* (I + x)# ,dx.

Setting ,/I _Ivrr =1I -ry and substituting for x =y + ( 2 r yields

SY+ 0Y2 )r ]kFY+ (I -- ') r)[ 1_2)r]3[ l+y+ (I (-ry) 1dy.

Factoring out the terms (l-y)" and (l+y)y, we have

__+ ((-yr 1'yF

S],+ - " (l-ry) dy.

We would now like to make a judicious choice of F in order to facilitate calcu-
lations. Following the lead of the Legendre polynomials (Chapter Il1, Section E.3)

suppose F is such that
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(16) F rY+ 2 )[...t2.][+Q- (IFy (1-ry) -1,

then the integral in (I5) becomes

(1,y2)r ]k
2 (1 y)" (I +y)P y.

We note that the integrand is a polynomial of degree k in the variable r as is

the right-hand side of(14). From (16), we get

F r, y+ -Iry - 1-(l+y)r I+ (I-y
2 2 2

which becomes, via 1-2xr+r2 =(1-ry) 2 , the generating function for the Jacobi

polynomials:

F(r,x) - 2÷ (-2xr+r2')-'1 ' [1-,+( -2xr+r')'I']-* [1 +r+(I-2xr+r2) 1/2]-P.

Using this generating function in (13) gives

c] q, P,(' P)(x) rn = 2+P (I -2xr+r')-'I ['-r+(I-2xr+r2)'/ 2 ]-* [+r+(-2r+r2 )'1 ]2-P
n=lO

from which we can determine c. by setting x = I and recalling that "P)()-- 0 ())

Thus,

ZC ( nl)a r- _2%+ (1-r)_l [2- (l-r)-] 2_ -P
n-0

which by the Binomial Theorem becomes

cn n f +I)i n
n=O n=O n

and so c. = I for all n. [Ref. 81
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B. SPECIAL AND LIMITING CASES

With the structure of the Jacobi polynomials established, we turn now to the role

of the parameters a and /.

1. Special Cases

For certain choices of the parameters a and fl, we find that the classes previously

examined and several new classes are produced as special cases of the Jacobi class.

These subclasses inherit the structure of the parent class which often provides a direct

way to establish specific properties (i.e., polynomial nature, orthogonality, etc.)

Table 1 provides the choice of parameters for selected classes.

Table 1. PARAMETERS FOR SELECTED CLASSES

Class Parameters

Jacobi >-l, /3>-I

Gegenbauer cc= -3.-1/2

Chebyshev,
First Kind

Chebyshev, 1/2
Second Kind

Legendre 0

2. Limiting Cases

In this section, we briefly examine the Laguerre polynomials and the Hermite

polynomials. Using the hypergeometric series definition of the Jacobi polynomials, we

show how the Laguerre class is a limiting case of the Jacobi class.

a. Laguerre Polynomials

The Laguerre polynomials, L,'"(x), are defined in terms of hypergeometric

series

(17) L(0)(x) n+) _-n ]

The first relationship to establish is
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L9(a)x) - Jim P 1)(:d I -)
To show this, we begin with the hypergeometric series representation for the Jacobi

polynomials

pn(%, (yY) 1 7 ) 2 F [-n, n+a+#+! 1-Y ]
n 2

When y -- 1- we have

Pn~x I +012FI-n, n+ct+,+l .r

Writing out the power series, we obtain

" n ka.o (x+l)kk!

n+Ct ' (-n)k x (n+a+f+l)k

==
= 1 k, (c-'+'k k'! plC

In the limit as fl -- 0o, the ratio

(n+a+P+l)k 1
plk

and so

/-4o fn (-+I)k k!

completing the proof. [Ref. 13: p. 103]

To obtain the orthogonality relation for the Laguerre polynomials, we start

with the orthogonality relation for the Jacobi polynomials

f P(f'P)('(y)yJ), P)(y)(l-y)2 (l+y)fldy=O, m2n.
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Letting y - 1 - gives

Passing the constants outside of the integral and dividing through by them leaves us with

Mon.

Taking the limit as P--+ oo, we obtain the orthogonality relation for the, Laguerre

polynomials

(18) fJ L,)(x) Ln()(x) x" e-- dx = 0, m # n.

b. Hermite Polynomials

The Hermite polynomials, H.(x), are defined

(19) H(x) = (2x)nF -n/2, (-n+1)/2 -1~

In a fashion similar to that for the Laguerre polynomials, the Hermite polynomials are

a limiting case of the Jacobi polynomials via the Gegenbaucr polynomials. Specifically,

ltn(x) = n! lim A -n/2 C•A)(A-,12x)
A-*oo

which allows a derivation of the orthogonality relation

(20) Hm(x)Ifnt(x)e-dx-0, mon

from that of the Jacobi class. [Ref. 13: p. 1071

C. DISCRETE EXTENSIONS

We turn now to orthogonal polynomial classes which use the discrete inner product

introduced in Chapter 11, Section A.2
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< f, g > A mf(x) g(x) w(x).
XWO

Here instead of a continuum the support of the weight function is concentrated of a fi-

nite set of discrete mass points (0, 1, ... , N). The polynomial classes of particular in-

terest are the Hahn, dual Hahn, and the Racah polynomials.

1. Hahn Polynomials

The Hahn polynomials - actually discovered by Chebyshev - were independently

realized by physicists working in angular momentum theory via 3-j, or Clebsch-Gordon

coefficients [Ref. 8]. We define this class by the generalized hypergeometric series

(21) Q,(x; a, /, N)-- 3F2 [ Mn,2-xLn R1 ;l]

for a > -1, 1 > -1, where N is a positive integer and n - 0, 1, ... , N. From the power

series

Q ,1, N) (-n),k (-x), (n+a+++ 1),t)
; , (a+l)k (-IV),k k! ()

we note that the variable x does not appear where we have come to expect. Since

(-x)k - (-x) (-x+1) ... (-x+k-l)

-(1)t (x) (x-l) ... (x-k/+l),

we conclude that Q.(x; a, 13, N) is a polynomial of degree n in the variable x. Because

0 < n. < N, this set of N+l orthogonal polynomials is finite for fixed a and fl. [Ref. 14:

p. 331

The Hahn polynomials satisfy the discrete orthogonality relation

IV

(22) Z'Qm(x; a, fl, N)Q,(x;a, P, N)w(x;a, fl, N)=0, m#n
X=O

where the weight function is given by a hypergeometric distribution
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W( X a , N ) X O - x /,(23) ANa(X+a)(NN+)- _

(l)X (),V-X

We note that the weight function may also be written

(24) w~x; a, fi, N) - (flt), (1~). (-N-).
(A16) (OX1 (-NP)1

We introduce the first forward difference operator acting on x

AfAWx --fn(x+ 1) -f400

as a discrete analogue to differentiation. Since

21,vxt) -f"(x+I) -f.(o),

(a discrete analogue of the Fundamental Theorem of Integral Calculus) the first forward

difference operator is a discrete inverse of the summation operator. This difference op-

erator is used in the Rodrigues' formula for the Hahn polynomials, which can also be

written in terms of the weight function wfx; a, P, N) with shifted parameters as was

done for the Jacobi polynomials.

Two limiting cases of the IHahn polynomials are of particular interest. In the

first case, replace x by Nx in the interval of orthogonality. This in effect places the

support of the weight function on the (N+l) equally-spaced points ( 0, 1/N, 2/N, ... , I }

in [0,1]. As N -+ oo, the set of discrete mass points tends towards the full interval

[0,1] ; we expect that this structure is reflected in the discrete orthogonality relation (22)

becoming an integral orthogonality with respect to a continuous weight function on that

interval. Rewriting the weight function in (23) as

r(.r+ l+) F( N-x+ 1+)

and using a consequence of Stirling's Formula [Ref. 15: p. 2571
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limt, F(t+a)

t-.• F(t)

we see that

r(a+1) r(#+l)iir Na w(Nx; a, P, N) -x4 (I ,

which we recognize as the continuous beta distribution for the Jacobi polynomials nor-

malized on [0,1].

This is indeed the case, and can be easily verified by a direct computation on the

hypergeometric series definitions (21) of Q.(x; a, fl, N) and (1) of PI`O)(x) given in Sec-

tion A.1, i.e.,

lrn Qn( Nx; a, P, N) - P(x. 'o(1-24

Thus the Hahn polynomials may be viewed as a discrete analogue and generalization of

the Jacobi polynomials. [Ref 14: p. 36]

The second li~miting case gives rise to an interesting class of polynomials which

has applications in coding theory [Ref. 161.

a. Krawtchouk Polynomials

For 0 <p < 1, let a-=pt, (•-(-p)t in (21), then take the limit as t tends

to infinity to obtain the Krawtchouk polynomials, i.e.,

limQn(x ;pt, (I-p) t, N)-

(25) 2Fl[I N; I T =K(x; p, N)

[Ref. 14: p. 381. A similar limiting argument applied to the weight function shows that

the Krawtchouk polynomials are orthogonal with respect to a binomial distribution:

(26) KmOx;p, N)Kn(x;p, IV) ( x(l-p).-x--, mon.

x-O

This class of polynomials possesses an inherent synmmetry, the structure of
which can be generalized to form other orthogonal polynomial classcs. To this end, we
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turn now to the characteristic of duality. For suitably defined functions u(x) and v(x), two

classes of orthogonal polynomials { p.(&*(x)) ), and I q,(v()) I are said to be dual if

P.(I(n)) - q,(v(x)).

That is, interchanging the roles of the degree n and the discrete variable x in one class

produces the other. The Krawtchouk polynomials provide an example of an orthogonal

class that is self.dual, i.e.,

K,,(x;p, N)-K,(n;p, N).

This is clear from the hyp~rgeometric series definition (25) given above. It therefore may

seem reasonable to suspect that there exists a class of orthogonal polynomials dual to

the Hahn polynomials. Such a class does in fact exist, and it is this dual class which we

next examine. [Ref. 17: p. 657]

2. Dual Hahn Polynomials

The dual Hahn polynomials, Rj( )(x) ; y, 6, N ), are defined

_ 'n-x, ~,_x+y+6+1 1
(27) R ,(,A(x) ; y, 6, N ) = 3 F{ X' ;l

where A(x) = x(x+y+6+1), and n = 0, 1, ... , N. These polynomials satisfy the

orthogonality relation

N

(28) Z. Rm(A.(x);y,6, N)R(,(A(x);y,6, N)w(x;y,6, N)=0, m¥on

where

W(X; V, 6, N) = (y+ 6 + 1). ((y+6+3)/2) (y+ l)x (-N)), (-1 )x
(29) (I)x ((7,+3+1I)/2)x (65+ 1).x (y+J+IV+2)x

(29)=+l1x (Y+6+1)x &+l)(-N)x 2x++y+6+1

(l)x (J+I)x ( Nv+y+6+2)x y+6++l

Note that R,(,A(x) ; y, 6, N) is a polynomial of degree n in the "variable" ).(x). The rea-

son can be seen directly from the hypergeometric series
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,(-")k (-xrf(+Y+6+ II)I

, ; , (y+l), (-N)t k!

By writing the terms (-x), (x+y+6+1), in product form, we obtain

A--I *--I

H (-x-+js• - (.+y+ca+j+1)

which becomes

k-I

H (-x+j) (x+y+6+I+j).

Multiplying these factors as binomials, we have

J7 (-X) (x+Y+a+ 1) +j (-x) +j (x+Y+6+ 1) +j2 ]
Iwo

which simplifies to

k-IH- [-X (x+yj+•1+) +j (y+6+l) +j].
/.,o

Taking only that part which depends on x yields

A(x) - x(x+y+6+ I)

as given above. [Ref. 18: p. 481
As discussed in the previous section, the discrete classes interact more naturally

with difference operators than with differentiation. To accomodate the quadratic form
of A(x), we introduce the divided difference operator

pf.( ,W))-- Af"( ).(W) f( .()x+ O)-f.( (x))
A ,A(x) •xl-.x

The dual interplay between the dual lHahn and Hlahn polynomials follows easily
from their hypergeometric definitions:
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R.(A(X);s,.+N)-, F2 [-X; - Qn(x;a, P, N,).

This duality is also reflected in the recurrence relations and difference equations of the
two classes. By interchanging the roles of n with x, a with y, and P with 6, the recur-

rence relation for one class leads to or can be extracted from the difference equation for

the other class. [Ref. 14: p. 37)

3. Racah Polynomials

Both the Hahn and dual Hahn polynomials can be unified as special cases of a
single larger class, the standard notation of which is similar to that of the dual Hahn

class. The Racah polynomials, ?&( A(x) ; a, P, y, 6), are defined by the hypergeometric

series

-nn+a+fi+l, -x, t+y+6+l 1'
(30) R(( A(x); a, P, y,,6)- 4F3{' a+l, +X+1,Y+1 ;1

where A(x) - x(x+y+6+ 1), n - 0,1, ... , N, and one of a+ 1, P+6+ 1, or y+ I equals -N.

(Physicists understand these objects via 6-j symbols.)

The orthogonality relation for the Racah polynomials is

(31) ZRm(A(x);a, ,y, 6) R,,((x) ; a, Pl y, 6) w(x; a, A, , 6)-0, my'n

where

W(X;a, 0, ,) (y+6+ 1), ((y+6+3)/2)x (a+ l)x ( P+6+ l)x (y+ l)x

(32) (y+ 6+ 1) 1 (a+l) (I++ l) , (y+1)x 2x+y+6+ I

(l), (Y+J-ct+1)" (Y-P•+ 1), (6 + 1) Y+6•+

[Ref. 19: p. 24]. Note that w(x ; a, P, y, 6) has a "well-poised" structure. This means that

the pairwise sum of numerator and denominator parameters is constant, i.e.,
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(Y+3 +l) + (I) - y+6+2
y+ 6+3 )+(YA ++

(t+I) + (y+6-t+l) - Y+J+2
(P+6+1) + (y-#+ 1) - y+6+2

(Y+1) + (•+1) - y+3+2.

The same could be said for the weight fUnction of the dual Hahn polynomials. (To say
that a hypergeometric series is well-poised means that for

F, L.b, ... Ib, '?

the parameters a and b satisfy the following relation

a1+l - a2+b1 - .... a,+I+b,

Well-poisedness is an important property of certain summable hypergeometric series.)
From the hypergeometric series definition (30) of the Racah polynomials, we

find that when the roles of x and n., and y, and P and 6 are all interchanged, the series
is unchanged. Thus, like the Krawtchouk polynomials, the Racah polynomials are self-
dual.

To recover the Hahn polynomials as a limiting case of the Racah polynomials,
let y+l - -N and 6 --1 co. Thus by formulas (30) and (21),

ur n, 43  n+ot+p+l, -x, x+y+6+1 F nn+ot+#+l, -x
6-0mF 1 +l, fl+6+1, -N ; 1 32[ •+l, -N J

and then by formulas (32) and (24),

limw•(x;., ,y,6) - ( -I W(x;a, P, IV).
6-a4ao(#I)V

Likewise, by letting *+ I - -N and , - cc, we obtain the dual Hahn polynomials.

Figures 5 and 6 together with Tables 2 and 3 provide a hierarchy of classes dis-
cussed in this chapter. Tables 4-15 summarize information about selected classes in this
hierarchy [Refs. 14, 12, 20, 21 , 5, 13, 9 , 221.
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Racah

Jacobt Krawtchouk MgoxWer

NOW' to

Figure 5. Hierarchy of Limiting Cases
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Jacobi

Gegenbauer

Chebyshev Chebyshev Legendre
First Kind Second Kind

Figure 6. Hierarchy of Special Cases
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Table 2. TABLE OF CLASSES

Class Symbol I lypergeometric Series

RaafaI 4+FI-n,n+a+#+ , -x,x+y+6+l ;I
Racah R,()$(x) ;v, 6, yN) 3F2[n, +lX x,f++ 1 ;1

I y+, -N+

DualHahn RQ(A(x);y, P, N) 3F2 [-x, -n, Kx+lX +++ I

Hahn Qn(x ; •, fL, N) a+ 1, -N 1

( a, +x 2) n, n a + f +1 . 1 -
Jacobi P" ) I 2F a +++1+ 1-x

Krawtchouk K,(x ; p, N) 2 F,1 .-n-N-X, 1 ]

Al(x 9) __ n,_____

Laguerre L(a (x) I + 1),, -nn. 10C[ +1;x

Charlier Cn(x; 0) 2F0o[, -x _ 1
n12)•r-/, ( -n + 1)/2.__ 1

Hermite IIA(x) [2
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Table 3. TABLE OF CLASSES (CONTINUED)

V C)()--"-(24]) r-n, n +2 .; 1- x.
Gegenbauer C.' W(2) n ,. + 1/2 2

Chebyshev, Tn(x) n 1 I2; 1x
First Kind 2

Chebyshev, U(x) (n + ) - x
Second Kind ( 3/2 2

Legendre P4n(x) 2F1 P, 1 + 2 x
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Table 4. RACAH POLYNOMIALS
Symbol: R,,(A(v); a, Pl,y, 6)

Interval: For N a positive integer, x = 0, 1, .. ,N.

Weight:

W~xa. o V 6)-2(v+ 6 + 1 )x ((y+6+3)/2)x ((x+ 1 ), ( #i+b+ I )x (y+ 1 )x
w~x~ ~~" ~ =(l)x((y+6+I)/2)x (y+6-a+l)x (v-fi+l)x(6+1)x

Norm:

Z [R,,( (x);c(, l, y, 6) ] wtx ; , i, y, 6)
x=O

=M (a+I?+2)2fl (a+'), ( 9+6+1)., (Y+ On

where if

or if

M (y+6+2),v (6 -oc),

or if

y+I = -N,'

M= (~-6 +)N (ocfl+1)Nv
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Table 5. RACAM POLYNOMIALS (CONTINUED)
H-ypergeometric Series:

R-( () W; a, Ply, 6) - 4F3 F-t, n+a+fl+ 1, -x, x+y+6+1~
L a+ 1, fl+ 6+1, Y+l I

where A(x) -x(x+y+6±l), n=O ,1,..N,
and one of a+l, fl+6+1, or y+1 equals -N.

Recurrence Relation:
A(x) R.( 2(x); a, P3, y, 6) - a(n) [ R,,41( (x); a, P3, y, 6)-R.,( (x); a, fl, y, 6)]

-c(n) [ R,( 2(x) ; oc, fl, y, 6)-Rn-..( )(x); cc, /3, v, 6)]
where

a(n) = (n+a+3+ 1) (n+a+l1) (n+93+6+l1) (n+y+l1)
(2n+a+fl+ 1) (2n+oc+/+2)

c~)-n (n+/3) (n+z+/3-Y) (n+ct-6)
c~)= (2n+a+/3+l) (2n+a+fl)

Difference Equation:
A(n) R,.( (n); a, P2, y, 6) =,A(x) [ Rx+1( 2(n); oc, fl, y, 6)-R.'( (n); a, fl, y, 6)]

-C(x) [ R,( 2(n); (z, fl, y, 6)-Rx...,( 2(n); a, v2 , 6)]
where

AW =) (x+y+6+ 1) (x+y+l1) (x+6+02+ 1) (x+a+ 1)
(2.v+y+6+I) (2x+Y+6+2)

C(x) = x (X+6) (X+V+6-a) (x+y-/3)
(2x+y+6+1) (2x+Y+6)

66



Table 6. DUAL HAHN POLYNOMIALS

Symbol: R,,().(x);V, 6, N)

Interval: For N a positive integer, x - 0, 1, ... , N.

Weight:

w(x, v, 6, N) -(y++ ). ((y+6+I)12)x (v+ I~x (y+6N+)x -

Norm:

[R,,().(x); y, 6 , N) ]' w(x;yv, 6, N) = n+) (N-n+6)]-

Hypergeometric Series:

where AWx - x (x+Y+6+1)

Recurrence Relation:
-A(x)R,(A(x);y,6, N)=B(n)[R,,+j1 U(x);y,6, N)-R,()(x);y,b, NV)]

-D(n)[R,,(A(x);y,6, N)-R,....(A(x);y,6, N)]

where
B(n) - (NJ-n) (y+ I1+it)
D(n) = n( N+ 1+6 -n)

Difference Equation:
-nR,(U(x); y, 6, N) -b(x)[Rn(A(x+1); y, 6, N)-R,,(A(x); y, 6, N)]

-d(x) [R,( A(x) ; y, 6, N)-R,( A(x-1) ; y, 6, N)]

where

b (x)=(+Y+b+1) (x+y+ 1) ( IV-x)
XJ-(2x+y+6+ 1) (2.v+y+6+2)

d~)= x (x+6) (x+y+6+N+ 1)
d~) (2x+y+t5) (2x+y+6+I)
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Table 7. HAHN POLYNOMIALS

Symbol: Q.(x; o, p, N)

Interval: For N a positive integer, x = 0, 1, , N.

Weight:

w(x; a, N)= (x+ )(N-x+fl)= (1+l), (I+l)x(-N)x

Norm:

"[Qn(x;•, ?, �N)] 2 w(x;e, N)
x,=0

2n+()+p+l 1+n)

r(o+ I) r(a+p+ i) r(n+f+ 1) r(n+ i)
r(w+1) r(n+a+1) r(n+a+f+ 5)

Hypergeometric Series: For a, 0> -I and

0, 1 N,
_n '-n n+at+l+ + 1, - -x ;

a,x;. . N)-3F2 1-.
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Table 8. HAHN POLYNOMIALS (CONTINUED)
Recurrence Relation:

-xQ.(x;a, fl, N))=b(n)[Q.+,(x;c, P, N)-Qn(x;co, #, N)]
-d(n) [ Qn(x; a, 9, N) - Q,..1 (x; a, P1, N)]

where

b(n) - (n+a+#+1) (n+a+1) (N-n)
(2n+a+.8+ 1) (2n+oc+#+2)

= n (n+*8) (n+a+fl+N+ I)
(2n+ca+*8) (2n+a+/+ 1)

Difference Equation:

-A(n) Q(x;a, #, N) = B(x) [ Q.(x+ I; a, P, N) - Q.(x; a, ft, N)]
-D(x) [ Q,,(x; a, #8, N) - Qn(x-l I a, #8, N)]

where

B(x) = (N-x) (a+ I +x)
D(x) = x ( N+ l+#i-x)
).(n) = n (n+a+f+ 1)

Rodrigues' Formula:

(x )N-xI) (In)Q.(x;c ai, N)

(n# An [ (+aý (N-x+IJ+n)
69+nj fl+n
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Table 9. JAICOBI POLYNOMIALS

Symbol: JO." 0'(x)

Interval: [-l,1]

Weight: (1 - x)a(I + x)

Standardization: VT "()~ - (fn!c

Norm:

[P~P)x)] ( -x) (1 + x dx 2~'r(nt+a-4-) r(n+fi+I)
(2n+c+#+I1) n! r(n+a+#+ I)

Hypergeometric Series: 2F,~(x nl n+a+#+I; .L....V

Recurrence Relation: 2 (n+l1) (n+t+#+ 1) (2n+c+#) 1 ()

=(2n+a+f+I1) [ (2n+ct+g) (2n+ot+f+2) x+ot2-f?2 ]nI 1)""(X)

-2 (n+a) (n+fi) (2n+a+/i+2) p~Pn('- 1e)(

Differential Equation:

(IlX 2 ) Y, +( I?-a- (e+#+2) xly'+n (n+a+P+l)y =0, y-P =P)x

Rodrigues' Formula:

2~n! Pg"M 0)(X) =(1)" (1 -X)-. (I +XY-p J [(I - X)2+1(1 + .)+n

Generating Function:

-0 2* I++ 7iT7) (I+t+ i 2t ý+ 2

Explicit Expression: I?~(x) =2` i (H~) (n+# (x- I )nk (X+l 1)
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Table 10. LAGUERRE POLYNOMIALS

Symbol: L.?"(x)

Interval: CO, oo)

Weight: x e-', a> -1

Standardization: LV.0)(I) -x+...

ni!

Norm:
fo r(n+•+ 1)

j0 [L.(x')] 2 xC e-x ,-I

Hypergeometric Series: ,.'(•I-)X(n+a) I,•,[ -n;+" x]

Recurrence Relation:

(n+1) L("'A+1 (x) -- [( 2n++1+ )-x] L( )(x) - (n+) L,._,(v)

Differential Equation: xy" +( c+l-x)y'+ny-- 0, y-- L.*(x)

Rodrigues' Formula:
1 •?' [x+l e-X]

n1 .11e- dxn

Generating Function:

I L(")(x) tn (-t ' exp( ~-
n-.0n 

X1

Explicit Expression:
00

k-O
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Table !1. HERMITE POLYNOMIALS

Symbol: 1.H(x)

Interval: (-oo, oo)

Weight: e-'2

Standardization: H.(I) - 2e xR+

Norm:

f H4(xc) ]2e- C'dx - •jn 2" n!

Hypergeometric Series:
Hn(x)- (24' 2 Fo[-n/2, (-n+1)/2 .

Recurrence Relation:

Hn+4 (x) - 2x Hn(x) - 2n Hn...(x)

Differential Equation:

y"-2xy'+2ny=O, y=H,(x)

Rodrigues' Formula:

H1(x) = (-1)" e-x' 3 IX

Generating Function:

2 H1(x) t" ie 2xtx_ 2

R-0 n

Explicit Expression:
(n/2J (2.

Hft(x) =n! Z: (- 1)k

k=O k! (n-2k)!
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Table 12. GEGENBAUER (ULTRASPHERICAL) POLYNOMIALS

Symbol: C."k.x) (or PC.j(x)), A > -1/2

Interval: [-1,1]

Weight: (I - xl)'-"'

Standardization:
lira ')(x)
li- TRW),n 0, 1, 2, ...

A-0 C.O (1

Norm:

[C~41(x)] (1 - 2d 2 2A-1 [ r(n+A+l/2) ]2J V)A1  , (n+A) n! r(n+2).)

Hypergeometric Series:

•(x) ( 2 F.) L A+ -- n, n+21 I-x 1=n•(X 2F, L[A+•1/2;"-

Recurrence Relation:

(n + 1) dCAx) - 2 (n+ A) x CA)(x) - (n+2 A-1) CI(x)

Differential Equation:

(_-x 2) y"-(2A+l) xy'+n (n+2A)y -0, y=- C"A)(x)

Rodrigues' Formula: Caftjx) - I, Cl•(x) - 2)vx,

2" n! (A+1/2)n (i-X2)A-12 CRA)(X) -(-1)m ()- [ (,-X2)n+AI-"2]

Generating Function:

Z C"A)(x) tn (l-2Xt+tl)-A

n-O
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Table 13. CHEIBYSHEV POLYNOMIALS OF THE FIRST KIND

Symbol: T.(.x)

Interval: [-1,1J

Weight: (1 - x2)-11

Standardization: T.(I) - I

Norm:

C~()1 - )-/d mx2 n00

Hypergeometric Series:

Recurrence Relation: T,+1(x) - 2xT.(x) - T,,(x)

Differential Equation: (1 - )y- xy' + ny -0, y - T.(x)

Rodrigues' Formula:

TM( 2n) - f21r(n + 1/2) dx1

Generating Function:

l-xt
n.,o l1-2xt+t ''

Explicit Expression:
7',(x) cos(nO) with x -cos O, 0• O <

2 k!(n - 2)! (x
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Table 14. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND
Symbol: Ut(x)

Interval: [-1,I']

Weight: (1 - x2)12

Standardization: UJ(I) = n + 1

Norm:
f, 1U,(X)12 (I - X212d

- 1 2 2dx _7

Hypergeometric Series:
[-n, n+l. l-x]

Un(xv) = (n+ 1) 2E1 3/2 ' 2

Recurrence Relation: U,,.,(x) = 2xU,(x) - U._,(x)

Differential Equation: (I - x2)y" - 3xy' + n (n+2)y =0, y - U,(x)

Rodrigucs' Formula:

U()= (-l)" (,, +1•) ,,/T ' r(I -. )+
U,(X) =(l-x 2)'1 /2 

2 n+i r(n+3/2) dx"

Generating Function:

L.Unx t2 l~<1 [ [<
n--o l-2.rt+t '

Explicit Expression:

Un(x) s sin(n +)0 with x = cos 0, 0 < 0: <n

sill
[n/2]

A!k (i - Ik)! (2x)'1_2k
7k5 2k)tI€=0
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-Table 15. LEGENDRE (SPHERICAL) POLYNOMIALS

Symbol: P.(x)

Interval: [-1,l]

Weight: 1

Standardization: P.( 1)= I

Norm: fp [-p(x)]d - 2-+I

Hypergeometric Series: P.(x) = 2Ff n+1; 2-x

Recurrence Relation: (n+1) P..6.,(x) = (2n+1) x P,(x) - n P,(x)

Differential Equation: (1 - x1)y' - 2xy' + n (n+1)y = , y - P.(x)

Rodrigues' Formula: P.(x) ( 2I" d [(I -)"]

Generating Function:

ZPn(x) mn-(l-2xt+t2)-112, -1 <X<1, I t <l
nwO

Explicit Expression: P.(x) ' (-1) 2 n2k
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V. APPLICATIONS

Orthogonal polynomials and special functions in general have been studied exten-
sively in mathematics and other fields since the eighteenth century. Presented below are
a few of the traditional applications of selected classes of orthogonal polynomials. Our
first few applications come from numerical analysis.

A. ECONOMIZATION OF POWER SERIES
Economization of power series is a technique used to reduce the degree of a

polynomial approximation to a given function.
The maximum norm (or L" - norm) for a continuous function on a compact inter-

val [a,b] is defined as

IlfI1**- max If(x) I.xv (a,b]

This norm is not induced by an inner product, but nevertheless has many uses in applied

mathematics, including numerical analysis.
The minimax property of the Chebyshev polynomials states that of all nih degree

monic polynomials (i.e., leading coefficient 1), 2-'T,,(x) has the smallest maximum norm
on [ -1,I] [Ref. 23: p. 1061. The justification for this statement is deferred until Section
C. Hence the best approximation in the maximum norm to the function X.' on [-1,1]
by a function of lower degree is f,(x) =.r - 2-,T(x). So, given a function and a
polynomial approximation to that function (e.g., from a Taylor series expansion), suc-
cessively replace the highest powers x" with f,(x) to obtain a polynomial approximation
of lower degree [Ref. 23: p. 1251.

Example 1: Let f(x) = sin x. The Maclaurin series for this function is

S(-1)k
sinx= (2-1) x2k+l

k= (2k + 1)!

and this series is convergent for x e R. If truncated after the r' term, the polynomial

approximation for the function is

X3 x5

sinxl x-; 3"- . + 5!
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with a maximum error of 0.0002 for x [e-1,1]. We use the fifth degree Chebyshev

polynomial T(x.) - 16& - 20.e + 5x to obtain

X xs 5x 3 5x
5! 480 1920

with an error not exceeding

maxI Ts(x) I

1920 719-2 0.00052

in ["-1,I]. Thus the approximation

.x3 5x 3 5X 1915 X 75 X3

sinx:zx- 3 + 480 1920 1"9'20"- 480X

has an error whose magnitude in [-1,1] does not exceed

0.00052 + 0.0002 = 0.00072.

Compare this with the maximum error of 0.00833 for the Maclaurin series which is

truncated after the x3 term. For a cubic polynomial approximation of sin x, the "econ-

omized" polynomial has a maximum error that is significantly smaller (less than one

tenth) than that of the truncated Maclaurin series.

The next three applications illustrate the usefulness of the zeros of orthogonal

polynomials. The first two come from numerical analysis, the third from a problem in

electrostatics. We begin with a preliminary discussion ofra fundamental technique from

numerical analysis.

B. POLYNOMIAL INTERPOLATION

Polynonmial interpolation is a method of approximating a given function with a

polynomial that matches (interpolates) the function at specified points (called nodes or

abscissae) x1, ... , x[ [Ref 24: p. 497]. Given a function f(x) and n distinct nodes in a

compact interval [a,b], there is a unique polynomial of degree (n - I) that passes

through the points (x,, f(x,)), I < i n.

For each i 1, 2,..., n, define a polynomial of degree (n - I) by
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k-i

kol

Clearly, for each k - 1, 2,., n, ,.,(xk) - 0 if k # i and ir,(x,) = 1, that is, X1,(Xk) =- 6,k,

(We may thus equivalently express x,,(x) = 4n(x)/((x-x,) 1.'(x,)), where 1,(x) = H (x-x.) isk-I

the unique monic polynomial of degree n that vanishes simply at each node Xk,

k= ,2,...,n.)

The Lagrange interpolating polynomial is now given by

,1(x) = Zf(.x,) X,(X).

Clearly, Lf(xk) =f(x,) for k = 1, 2, ... , n, and uniqueness of the degree (n - 1) interpolat-

ing polynomial is guaranteed by the Fundamental Theorem of Algebra.

C. OPTIMAL NODES

In this section. we address the issue of estimating the maximum size of the interpo-

lating error 1If-L! 11... Assuming f is suitably differentiable in Ea,b], it can be shown
[Ref. 25: p. 188] that there exists a value K, (which depends onfjin [a,b]) such that for
any x in Ea,b],

KIIfx) - O(X) I" I In(Q) 1,

where I(x) - fl (x - x,). (Note again that 4,(x) is a monic polynomial of degree n whichi-i

vanishes at the nodes.) This implies that 1fl- L', 1L.. is minimized by making the optimal
choice of nodes x,, ... , x. in [a,b] which minimizes 111, h1.. Surprisingly perhaps, this hap-

pens precisely at the zeros of the Chebyshev polynomials TQ(x), scaled to the interval
[a,b]. We sketch the reasons below.

For simplicity, we take our interval of interest to be r-1,-1] instead of [a,b] without

loss of generality. The transformation

or equivalently,
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2--\ a -1,

is a one-to-one continuous mapping between the intervals [-1,1] and [a,b].

Now let x, be such that T.(x1) - 0, i = 1, 2, ... , n (see Chapter I, Section A.3), i.e., let

4,(x) - 21-L T,(x). From the recurrence relation (Equation (4) in Chapter 1), T.(x) has a

leading coeflicient of 2"-' ; hence this 4,(x) is monic. Moreover, from the definition

Tj( cos 0) - cos nO, it follows that

osin

where y, - =.V-cos i- O, 1, ... Hn. Now suppose m%(x) is another monic polynomial

of degree n such that

(2) I,, II < I11,,• 2n_, •

Combining (1) and (2) we see that we must have for i - O, 1, ... n,

m(y•) < ,,(y) --- if i is even, and
(3)

mn(y1) > In(Ya) --- if i is odd.

Thus, the polynomial p.(x) - n,(x) - 4.(x) has degree at most (n - 1) (since it is a differ-

ence of two monic polynomials of degree n) with at least n zeros, one in each interval

(yr ,Yy.), 0 • i < n - 1, by (3). This contradicts the Fundamental Theorem of Algebra,

and so no such polynomial mn(x) satisfying (2) exists.' Hence the choice of nodes xi de-

termined by 4,(x)= - - T,(x) minimizes j4 In =-max I 4(x) I over all possible monic-I_'s1

polynomials 4(x), and therefore over all possible choices of interpolating nodes x,.

It should be emphasized that this Chebyshev interpolation allows an a priori error

bound for all x, but is not always best possible for every x using other interpolation

schemes. (For example, if equally spaced nodes x,, ... , x. are used, thcn trivially, the cr-

rorf(x,) - LI(x,) = 0, cvcn if x = x, is not a Chcbyshev zero.) Chcbyshev zeros arc opti-

mal when one has freedom in the choice of nodes. For details regarding the practicality

of Chebyshev interpolation and some asymptotic results, see [Ref. 241.
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D. GAUSSIAN QUADRATURE

Quadrature formulas are used in that area of numerical analysis concerned with the
approximate integration of a function f(x) against a weight function w(x) > 0 on an in-

terval (a,b), when the explicit evaluation is intractable.

An interpolatory quadrature is such a rule that uses interpolating polynomials, such

as Lagrange polynomials:

f (xwx) dx : f Lf(x) w(x) dx,

a "a

where 14,(x) = Ef (x) in,(x), as described above. This can be rewritten as
iI1

whee f (x) w(x) dx o Zf(x,) W r
i-i

where the weights w, are given by

(2) w f-- ,,(x) w(x) dx.

Thus, interpolatory quadrature is basically a weighted sum of the function values f(xi)
at the nodes x1, i = 1, 2, ... , n, as are numerical integration recipes such as Simpson's

Rule and the Trapezoidal Rule.
For specified nodes x,, ... , x. e [a,b], the n weights w1, ... , w, computed in (2) for the

quadrature (1) will be exact for polynomials fe P,_I[a,b], but we can do better. [Ref.

25: p. 2361

In Gaussian quadrature, we ask for the location of thc n nodes x1, ... , x, as well as
the n weights w1, ... , w, in order for the quadrature rule (1) to be exact for polynomials

fe P,_-[a,b]. At first glance, this seems to be an extremely complicated computational

problem, but the solution falls out simply when the theory of orthogonal polynomials

is applied.

Let { p,(x) )} be the class of polynomials orthogonal with respect to the weight
function w(x) on [a,b], say, by Gram-Schmidt, and let L4(x) be the Lagrange polynomial

that interpolates f e Pn_ [a,b] at the zeros of pA(x), so that f(x) - 1,(x) e J2_E[a,b] van-
ishes at the zeros also. Since the zeros of p,(x) arc real, simple, and lie in (a,b), we have

the property that
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f(x) - L (x) - Pr(X) q . (x),

where q,, e PEa,bJ. Hence, by orthogonality,

fb
jf(x) w(x) dx - Lf(x) w(x) dx = p.(x) q,._.(x) w(x) dx -0.

We have thus shown that the resulting n-point Gaussian quadrature rule is exact for

fe Pz1 [a,b]. Moreover, by a theorem of Stieltjes, iff(x) is continuous on a finite inter-

val [a,b), then

limr 4(x) w(x) dx - ff(x) w(x) dx.

By applying the Christoffel-Darboux formula (Equation (9) of Chapter III with

notation from Chapter III, Section B) and using (1), it is possible to derive an alternate

expression for the weights (2):

An+!
w- -kh. p'(x) pn+l(XI)

which are referred to as the Christo;'el numbers. [Ref. 8 ]

Thus Gauss-Jacobi, Gauss-Chebyshev, and Gauss-Legendre are the names given to

Gaussian quadratures involving the weight functions and orthogonal polynomials from

the Jacobi, Chebyshev, and Legendre classes, respectively.

E. ELECTROSTATICS

The zeros of the Jacobi polynomials play an interesting role in a problem of Stieltjes

concerning electrostatic equilibrium. In this problem, fix 'masses' of positive charge a

and ft at the points x - 1 and x - - 1, respectively. Then place n point masses of positive

unit charge in the interval (-1,1) so that they are free to move. These interior masses

are now subject to a "logarithmic potential", that is, a repelling force that is proportional

to the logarithm of the distance separating them. The problem is to determine the dis-

tribution of the point masses x,, i = I, 2, ... , n, when the system is in equilibrium.

Mathematically, this is equivalent to maximizing the force function
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n I

(3) F(xl,...,.r-)"uZ log(l-x,)+IZ log(l+xd+ E log xI-xjI.
inn 1-1 sIq

The logarithmic terms give the restrictions x1 0 -1, x. 9 1, and x1 #.Yx for i 0j. This

otherwise continuous function gives the equilibrium points by setting

(4)-• -f0, i= 1,2,.,(4)
ax,

and solving for x,, ... , x,. To solve this system of n nonlinear equations in n unknowns,

Stieltjes introduced the polynomial

p (x) =17 (x-x)
1-I

and reduced (4) to

I p,,(xt)I •(V + •-0, i---1, 2,...,n
2 pn'(x1 ) l+x1  l--xi

which becomes

(l-x 2 )pn"(.rx) + [ 2fl - 2a - (2a + 2ft) x] p,,'(xj) - 0

for i - 1, 2,..., n.

Since the polynomial

(I - x 2)p(x) + ( 2P - 2ac - (2c + 2P) x ] p,,'(x)

is of degree at most n and vanishes at x = xj, i = 1, 2, ... , n, it can be set equal to a scalar

multiple ,p.(x) which also vanishes at these points. I lence

(1 - x 2) p,"(x) + [ 29 - 2a - (2a + 2fl) x ] p,'(x) - ,4p,,(x) = 0.

Attempting a powcr series solution to this second-order differential equation leads to the
observation that polynomial (i.e., terminating) solutions exist if and only if

A = -n(n + 2a + 2P? - I).
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Rearranging terms yields

( x 2)p,'(.t) +[(2p- [ )-(2- - 1) - ((2ot - 1) + (20- 1)+ 2) x]p'(x)
+n(n + (2ot - 1) + (2# - 1) + 1) p,,(.x) - 0

which is the differential equation for P•, "''(x). Thus the equilibrium positions of the

unit charges occur at the zeros of this Jacobi polynomial. [Refs. 8, 13: p. 1401

The zeros of the Laguerre and Hermitc polynomials can be developed as solutions

to similar electrostatic equilibrium problems.

F. SPHERICAL HARMONICS

We investigate another application of orthogonal polynomials to problenis in

mathematical physics. In Cartesian coordinates (x,y, z), the Laplacian operator of a

function u(x,y, z) is defined as

vU2U a2U + + a2U
B= 2~r 62 aZ'-T

When converted to spherical coordinates (r, 0, 0), this operator acting on a function

u(r, 0, 0) becomes

(5) 1 (P r + I sin0us)+-'I 1(5) ~u'=r" (2 u~ sin---0O sin 20 s

where subscripting with r, 0, or 0 denotes partial differentiation with respect to that

variable. A function u is said to be harmonic in a region D if in that region it satisfies

Laplace's equation:

V2 u O.

In particular, if the boundary of D is the unit sphere centered at the origin, then using

the method of separation of variables, the Legendre polynomials arise naturally as part

of the solution.

In separation of variables, we assume that the solution will be of the form

(6) u(r, 0, 4) =-f(r) g(O) h(O).

Substituting (6) into (5) and dividing through by u, we obtain
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(7) .• ( 2f,),+ - ( sin 0eg)o + h,,- 0.g sin 0 h sinO0

The first term, depending only on r, must reduce to a constant which we write as

v(v+ 1). Substituting v(v+ 1) into (7) and multiplying through by sinrO, we have

v(v+1) sin 2O+ - (sin0 g)e+-ho,-0.

Now we see that the third term, depending only on 40, must also reduce to a constant;

call it -ml. Substituting -ml for this term and simplifying, we obtain

(8) sin 2Ogoo+ sin cos0go+[v(v+l)sin 2 O-m 2]g,-0.

By the change of variable x- cos 0, (8) becomes via the Chain Rule

(1-) - - 2x - + [V(V+1) o2.
dx2 dx -. I

For problems that are radially symmetric, the 0 dependence can be removed by setting

m - 0, leaving

(9) (l-x 2) !L -- 2xd + v(v+1)g=,0.

When v is a positive integer n, (9) is recognized as the differential equation for the

Legendre polynomials. [Ref. 26: pp. 210-213]

An alternate approach to this problem (by the method of images) uses Green's

functions. As motivation, consider the Dirichlet problem for the unit circle in the plane,

which involves finding a harmonic function u(r, 0) in the unit disk that takes on pre-

scribed function values f(0) on the boundary r = 1. The solution is given by

u(r, o)=- 2fL f(t) Pr(G--') dO',

where

P~y) = l-r 2 '

1l-2r cos y+r2
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:s the so-called Poisson kernel for this problem.

Similarly, the solution to the DiUm pvbim fo se qdmm ki l

jV3U - 0{ -AS. Q -

can be expressed as

u(4, .)8 - 9 ve . ,d "

where

(10) Pgy) 1m

[1-2r cos y+r3 J"'

and

cos Y- cos e cos e' + sin 0 sin r Cos(# - #*).

Writing (10) in terms of simpler functions

P,(Y)+2
P ,1ym 1-2,r csy+r2  Sf 2r* -2r c~os Y+r~

we note the appearance of the generating function for the Legendre polynomials, with

x - cos V. Therefore the Legendre polynormials are again part of the solution. [Ref. 27:

pp. 87-891

Laplace's equation can also be solved in a higher dimensional setting. Let

x = (xi, ... , x,) e R'. Note then that we may. write x - r4, where

r =- 1 x -lx/ + ... + x. and -e R' is a unit vector. A polynomial

h,(x) is said to be homogeneous of degree n if h,().x) = A, h,(x).

The Laplacian operator acting on a function u(x) in p dimensions is defined as

i-Ii "r
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As before, a harmonic function is one which satisfies Laplace's equation V,u- 0. We

now seek homogeneous harmonic polynomials of dcgre n in x e R'. It can be shown

that there are exactly

NN 2n + p-2 +p-3
N-NH. n n- I

linearly independent such solutions, and they can be characterized by Gegenbauer (or
ultraspherical) polynomials C.11(t,), k - 1, 2, ... , N. The general solution is given by

hn(x) - hn(r,)- r" S,(4),

where the sphercal harmonic

N ~2-2
SM4 k,A,! C( )A1k

with % suitably chosen unit vectors. Note that if p - 3, then these reduce to the

Legendre polynomials found earlier. [Ref. 6: pp. 168-183]

G. GENETICS MODELING

Karlin and McGregor gave an interesting application of the dual Hahn polynomials

to a model in genetics. In this continuous time Markoff chain model, the dual Hahn

polynomials R,,( )(x) ; ,, 6, N) arise in the transition probability function for the process.
The setting for the model assumes N gametes of type a or A and gives a random

fertilization scheme. The population of either type of gamete is affiected by both the

fertilization process and a mutation process whereby a gamete resulting from a mating
can mutate into the other type.

By considering the conditional probabilities for an increase in population size of

both gamete types, a stochastic process is defined which is a classical birth and death

process. The transition probability function for this last process is then cast in terms

of the dual Hahn polynomials. The interested reader is referred to [Rcf 14] for the de-

tails.
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VI. BASIC EXTENSIONS

A. BASIC IIYPERGEOMETRIC SERIES
In this chapter, we extend the structure and some of the results in Chapter IV to a

more general level. This extension is accomplished by introducing a new parameter

called the base to the hypergeometric series. The base q was used by Heine in a series

(1) 1+ (I-q) (l--qb) (I--qs) (--qe+') (--qb) (--qb+') X2+.
(1-q) (I-qý x (I-q) (I-q') (1-q') (I-qc+')

where c # 0, -1, -2, ... [Refs. 28,291. This series converges absolutely for I x I < 1 when

I q I < 1 by the Ratio test. Since

(2) rnm . a,
q-. l--q

we see that the series in (1) tends termwise to the ordinary hypergeometric series as

q -+ 1. Thus Heinc's series is called the basic hypergeometric series or the q-

hypergeometric series. [Ref 12: p. 3]

The q-shifted factorial is the basic extension of the shifted factorial introduced in

Chapter II and is defined

1i, nn-O
(3) (a;q),- (I _a)l(I-,aq)(... I --aq -') , = 1,2,....

The ordinary shifted factorial is recovered by applying (2) and (3) in the limit

lim(q qnq-• (1 -qYn=1)

We also define

(4) (a; q). = flj (1-aqk),
k-O
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a form we will see in later results. Since the infinite product diverges when both a 16 0

and I q.1 2 1, we will assume I q I < I whenever (a; q).. appears unless otherwise stated.

[Ref. 12: p. 31
Generalizing the basic hypergeometric series above, we define the ,0, basic

hypergeometric series (or ,4, series)

al,,... , a, (a, ; q),,... (a,; q), q(_ ,)n(5) js Lbl, ... , bs ;q'x = (q; q)n (b, ; q)n ... (bs ;q)n q-~ +-rX

where (2)= n(n- 1)/2 and q O0 when r> s+ 1. We require that the paranreters

bb..., be such that the denominator factors in each term of the series are nonzero.

Since

(q-m;q), = 0, n=m+ l,m+ 2,...,

a ,•, series terminates if one or more of the numerator parameters is of the form q-m for

m = 0, 1, 2, ... and q # 0. When r = s + 1, the expression in (5) simplifies to

Sa,,,+, q 1 . Z (a, ;q)'...(a,+,;q)n n
S+1 b,... , br I q = (q ; q). (b, ; q)n ... %; q) .

Note that in a basic hypergeometric series E c, x', the ratio c,+,/c, is a rational function
of q'. [Ref. 12: p. 4]

Using the q - shifted factorial (3) and (4), we can define basic extensions for. many
of the functions and formulas introduced in earlier chapters. We note that often there

is more than one way to extend a result; examples will be given shortly.

The q-gamma function is defined by

(q; q).(6) Fr($r) -q ;, (-l-'0<q<1

Gosper showed that

(7) lim Iq(x) = r)

for 0 < q < I [Ref. 30: p. 1091. The structure of the gamna function extends as well.

For instance, the formula
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r,(X+l)"/ -q )Fq(X)

can be reduced using (6) to

r(x+ 1) - x r(x).

With (6) we can define the q-betafunction

rq(x) rq(y)
BJq(X,Y - rq(x+y)

which by (7) tends to B(x,y) as q -+ V.

The q-binomial coefficient is defined for integers n and k by

[n]. (q ; q)nk q -(q ; q),k (q; q)n-k'

where k - 0, 1, .. ,, n. For nonintegral a and ?, we define

[;] (q+'' ; q). (q*-P+I ; q)0,
fl q -(q ; q).o (q"+' ; q).

rq(a+l)
r,(P+ 1) r((Z-g+ 1)"

The q-binomial theorem is then

(ab ; q)n - n b k (a; q)k (b q)...t

where n - 0, 1, 2, .... [Ref. 12: p. 201

The next two expressions are basic extensions of the Chu-Vandermonde formula

(Chapter II1, Section F. 1) and are both known as the q-Chu- Vandermonde formula:

201 lq-n, b 9q' cqn 1 (c/b; q)n',q ,

10 (c;q)
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2 q-01 , b (cb; q)n b2011 C ;q'q (C (;q) b

[Ref. 12: p. I l]. These forms can be shown to be equivalent by reversing the order of

summation.

Jackson introduced the general form of the q-integral

f f(t) dt - t) dqt - f f(t) dqt

where

faf()dqt - a(I -q) I~f(aqn) q2

The q - integral defines the measure dqt which is a natural object for

q - defined functions [Ref. 12: p. 191. All of the functions and formulas developed above

play an important role in generalizing the ordinary orthogonal polynomial classes.

B. BASIC EXTENSIONS OF ORTHOGONAL POLYNOMIALS

In this section, we present the q - analogue(s) of selected classes from earlier chap-

ters. By using formulas such as those presented in the previous section together with

methods based on those outlined in the preceding chapters, it is possible to derive the

recurrence relations, difference equations, and Rodrigues' formulas as well as many

other identities satisfied by these q -versions. As mentioned in the previous section, the

q - extension of a function is not necessarily unique; however the last two classes listed

are especially .portant.

1. Continuous q -Hermite Polynomials

a. Definition

S(q ; q). e 0-2k0lln~x~q)-- (q; q)k (q;'q n-k ln2)

where x = cos 0.
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b. Orthogonality Relation

J'H.(cos0lq)Ifn(cos0eq) J(e2I@;q)0 j2 do- (q; q).

where x - cos 0. [Ref. 12: p. 1881

2. Discrete q -Hermite Polynomials

a. Definition

(n/2J[.1;q)-2] (q ; q)n (_l)k q k(k-1) x M-2k

k- (q 2• (; q 2),t(q; q).-2

b. Orthogonality Relation

H,.(x; q) 11.(x; q) dO(x) = q(2) (q; q)n 6m•

where Ov(x) is a step function with jumps

lxi (x2ql ;q 2). (q; q 2 )00
2 (q2 ; q2)o

at the points x -q, j = 0, 1, 2,.... [RcE 12: p. 193]

3. q -Laguerre Polynomials

a. Definition

For a > -1,

(q"+ ; q). L q-n n++L(x (; q) (- ; q),, 0;q

b. Continuous Orthogonality

'f (x; q) L,"(x ; q) X dcl re(+ ) r(-a) (q,+' ;q),

) q ) q l q).q),. q(-a)9(q;2q),,q
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e. Discrete Ortkhgonaity

_________________ 4

FZ I4,)(cqk; q) L.(2)(Cqk; q) -30A ; q)Jql~ ."
It-G 7-(q;).•~q;)(c(l-q)q*; q)•-A (q ;q)R q" m

where

(q; q).o (--€(l--q)qeCt q). (-(I-q)l(cqý I q).

A (q" ; q). (-c(l -q) q). ( I -q) ;q

(Ref. 12: pp. 194-1951

4. Little q -Jacobi Polynomials

a. Definition

p.(xv ; a, b ; q) - TO [q-N ab+'q ; q, xq

b. Orthogoy RMotion

O0 (bq :q)x

p.(q* ; a, b ; q) pg(q' ; a, b ; q) (q "q), (aq)x

(q ; q), (I -abq) (bq ; q). (abq ; q)C

. (abq ; q). (1-abq2"+') (aq ; q), (aq; q)..

where 0 < q, aq < 1 [Rqf. 12: p. 166]

S. Big q -Jacobi Polynomials

a. Definition

P(x'abC'q) 302 q- abqt x" . q, q1

q, cq
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I.Orthogonalityp Relation

where

-aq (1-q) (q ; q) (c/a ; q). (aqic ; q). (abq2 ; ;)

[Ref. 12: pp. 167-168]
6. q -Krawtchouk Polynomials

a. Definition

K,(x ; a, N; q) - 3062[q _n 0 o - q A q]

b. Orthogonality Relation

N (q-'; q~x

- (-q'; q)Afq2 (q ; q)p, (I + a-') (-a-'qN+I ;-q)n
(-qa-; q)v a q 2 (ý-i ;q)n (I + a-'q 2 11) (q-'; q),,

[Ref. 12: p. 185]

7. q -Hahn Polynomials

a. Definition

Q.(xv;a, b,N; q) - 34 2 [qf, abq"t', qX;q

L aq, q-ibJ ;q
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b. Orthogonulity Rehlaton

N Q M ; a b , N ; ) Q #( x ; a , , N q) (a q ; q ) jt (b q ; q )g V- x ( a q ) t

(abq 2; q),v(aq)-o (q; q)II (I -abq) (bq; q)"t (abq"~ ;q)

x (aq X -tmJ,,f 0M, n - ,l1,... ,N

[Reft 12: p. 1651

8.Dual q -Hahn Polynomials

a. Definition

Rt,( p(x); b, cN; q) - 0 L q- ]c q

where A(x) - q-, + cqa-'

b. Orthogonality Relation

NVZ: R.(,g(x) ; b, c, N; q) R.(*(x) ; b, c, N; q)
X-0

x(cq"'; q), (1-cq'O~ (bcq; q)x (q-'v; q)x qN7x-* C) (-bcqF-x

[Ref 12: p. 1661

9. q -Ratcah Polynomials

a. Definit ion

(8) p,(Pu(x) ; a, b, c, d; q) M403 abq", q, cdqx+t ,L aq, bdq, cq ;q

where Az(x) - q*x + cdq,,*'
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b. Orthgenaudlity Relation

When aq, bdq, or cq - q-I for a positive integer N. then

N
(9) ) •p.(IA(x) ; a, b, c, d; q) p.(,u(x) ; a, b, c, d; q) w(x ; a, b, c, d; q) - h. 6...

where

w(x ; a, b, c, d; q)

(10) (cdq ; q), (aq; q). (bdq ; q), (cq ; q)j, I - cdq~x•l

(q; q) (a-'cdq; q)x (b-cq ; q). (dq; q). (abq)x I - cdq

and

(q; q)n (l-abq) (bq; q). (ad-7q; q), (abc-'q ; q), (cdq)"

(11)(abq; q), (l-abq n+I) (aq; q), (bdq; q), (cq; q),
(1(cdq2 ; q),, (a-t b-'c ; q). (a-'d; q). (b-' ; q).
X(a-t cdq ; q). (b-t cq ; q),, (dq ; q),, (a-' b-t q-t; q FI

[Ref. 20: p. 1014]. When aq, bdq, or cq is eqtual to q-C, the infinite products in (11)
reduce to finite products. Hence the orthogonality relation (9) is valid for all q provided

no zeros are introduced into denominator terms [Ref 18: p. 41.

10. Askey-Wilson Polynomials

a. Definition

pn(x ; a, b, c, d I q) - a' (ab ; q), (ac ; q), (ad; q).

(12) 43 q - abcdq', ae', ae-- q
ab, ac, ad ;q,

where x - cos 0 [Ref 18: p. 31

b. Orthogonality Relation

For-I <a, b, c, d, q< 1,

2,,*jx alq ;, b, c, d Iq) dlr
2xJf pm"(xv; a, b, c, d I q) p,(x; a, b, c, d9 q)
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where

1-1 (1 - 2(2x' - I)qk + k
w(x; a, b, C, d I) h(x,a) /(x,b) h(x,c) h(x,d)

with

A(x,a) - H1 (I - 2axqk +a aq~
k=o

and

(abCdq2m ; 9)., (abc~dqn-1 ; q). (q"~ ; q)-' (abq" ; q)-l
h, - (acq, ; q).. (aq, ; q).. (bcq ; q).. (bdq ; q).. (cdq, ; q)..

[Ref. 18: pp. 11-141

We can establish a formal connection between these last two classes. If the

q -Racah polynomials are written

403 [q. adblqA+, q Z, c- 'dqx+I'
I a'q, b'dq, c'q ;q,

and the following parameter changes are made:

as- ..EC b- .. M c'- ab - a
q ' q b

(or likewise using any permutation of ( b, c, d) assuming at least one of these is non-

zero), as well as the change of variable q-" - aeW, then we obtain

43 [q- abcdq'-, ae', ae q, 1
ab, ac, ad q,

with

M(x) - q- + qX+Yc'd
- aele +ae-1 ,- 2a cos 0
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That is, the q -Racah and Askey-Wilson polynomials are virtually the same, differing
only in their parameters, normalization, and variable.

Because the q -Racah and Askey-Wilson polynomials are essentially the

same, the names are often used interchangeably in the literature. We have presented

these polynomials as distinct classes in order to emphasize the continuous and discrete

natures as expressed in the orthogonality relations.

As stated at the beginning of Chapter IV, the "classical orthogonal
polynomials* are defined to be those which are special or limiting cases of the Askcy-
Wilson (21) or q -Racah polynomials (18) [Ref. 31: p. 57]. We can now make this
statement a hit more precise. Letting

a-q4 , bmqp , c-qy , d-qd

in (9) and (10) and taking the limit as q-+ I, the ordinary Racah polynomials
R,( .(x);ctj, , y, 6) and their weight function as defined in Formulas (30) and (32),

Chapter IV, Section C.3 are retrieved. A similar limiting process will recover any ordi-
nary orthogonal polynomial class from its q -extension. Moreover, any q -extension

previously discussed is a special or limiting case of the q -Racah. For example, letting
cq - q-" and d w 0 produces the q -Hahn, etc. In this way, we see that the self-dual

q -Racah polynomials encompass all the previous classes. They also satisfy three-term
recurrence relations, second order difference equations, and Rodrigues' formulas with

respect to q -divided difference operators. The interested reader is referred to [Refs. 18,
12, 201 for details about these very rich classes.

C. CONCLUDING REMARKS
In Chapter V, wve presented a few of the traditional applications in which orthogonal

polynomials have played an important part. More recently, an enriching interplay has

developed between the theory of orthogonal polynomials and other mathematical and

mathematically-rclated areas.

Efficient computational methods have been devised for determining tile many useful
quantities associated with orthogonal polynomials (such as their zeros, recurrence coef-

ficients, etc.) [Ref. 32: pp. 181-2161. Various classes of orthogonal polynomials have

also played a role in digital signal processing [Ref. 32: pp. 115-1331, quatitum rncJuhnics
[Ref. 32: pp. 217-2281, and birth, dcath processes [Ref. 32: pp. 229-2551. Advances in the

field of combinatorics and graph theory have allowed new geometric interpretations or
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orthogonal polynomial identities, some of which have very important consequences for
"association schemes" and the designs of codes I Refs. 33, 16, 34, 32 : pp. 25-53, 35).

Physicists have introduced various versions of "diagrammatic methodsW: ways of
understanding orthogonal polynomials through 3-j and 6.j symbols, their generaliza-

tions, and accompanying identities by formally associating them with pictorial schenmat-

ics representing forces or physical systems that conserve angular momentum JRef. 361.
Powerfal new techniques involving "quantum groups" have been used to generate new

identities for some classes (Ref. 32: pp. 257.292]. Further investigation into the
electrostatics problem discussed in the text has led to the formation of the famed

"Selberg beta integral" and its generalizations. It has yielded to analysis via the study

of the "root systems" of Lie algebras, and has found applications ranging from statistical
mechanics to computer algorithm complexity [Rers. 30: pp. 48-52, 32 : pp. 311-318, 37).

Finally, research into the general structure of q -series has led to many surprising
connections, and is intimately related to the many remarkable and powerful number-

theoretic formulas discovered by S. Ramanujan, the famed Indian mathematical prodigy

[Refs. 30: pp. 87-93, 38: pp. 55-66, 391.

This utility and promise of future applications provide ample motivation and justi-
fication for continued study of the intrinsic structure of orthogonal polynomials.
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